基于ML/DL的sussex-huawei移动-运输(SHL)识别挑战的分层分类

Y. Tseng, Hsien-Ting Lin, Yi-Hao Lin, Jyh-cheng Chen
{"title":"基于ML/DL的sussex-huawei移动-运输(SHL)识别挑战的分层分类","authors":"Y. Tseng, Hsien-Ting Lin, Yi-Hao Lin, Jyh-cheng Chen","doi":"10.1145/3410530.3414347","DOIUrl":null,"url":null,"abstract":"In this paper, our team, SensingGO, presents a hierarchical classifier for Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge. We first separate the original data into motorized activities and non-motorized activities in the first layer of the classifier by using accelerometer data. For the non-motorized activities, we calculate auto-correlation values with accelerometer data as input features. For the motorized activities, we take magnetometer and barometer with mean, maximum, standard deviation values as input features. Finally, we integrate the recognition results of each layer of the classifier, and the average F1-score is 50% to the validation data.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hierarchical classification using ML/DL for sussex-huawei locomotion-transportation (SHL) recognition challenge\",\"authors\":\"Y. Tseng, Hsien-Ting Lin, Yi-Hao Lin, Jyh-cheng Chen\",\"doi\":\"10.1145/3410530.3414347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our team, SensingGO, presents a hierarchical classifier for Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge. We first separate the original data into motorized activities and non-motorized activities in the first layer of the classifier by using accelerometer data. For the non-motorized activities, we calculate auto-correlation values with accelerometer data as input features. For the motorized activities, we take magnetometer and barometer with mean, maximum, standard deviation values as input features. Finally, we integrate the recognition results of each layer of the classifier, and the average F1-score is 50% to the validation data.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们的团队SensingGO提出了一种用于sussexhuawei locomotiontransportation (SHL)识别挑战的分层分类器。我们首先利用加速度计数据在分类器的第一层将原始数据分为机动化活动和非机动化活动。对于非机动活动,我们计算自相关值与加速度计数据作为输入特征。对于机动活动,我们取具有均值、最大值、标准差值的磁力计和气压计作为输入特征。最后,我们对分类器各层的识别结果进行整合,平均f1得分为验证数据的50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical classification using ML/DL for sussex-huawei locomotion-transportation (SHL) recognition challenge
In this paper, our team, SensingGO, presents a hierarchical classifier for Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge. We first separate the original data into motorized activities and non-motorized activities in the first layer of the classifier by using accelerometer data. For the non-motorized activities, we calculate auto-correlation values with accelerometer data as input features. For the motorized activities, we take magnetometer and barometer with mean, maximum, standard deviation values as input features. Finally, we integrate the recognition results of each layer of the classifier, and the average F1-score is 50% to the validation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信