{"title":"一致性不变量与Turaev属","authors":"H. Jung, Sungkyung Kang, Seungwon Kim","doi":"10.1093/IMRN/RNAB055","DOIUrl":null,"url":null,"abstract":"We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concordance Invariants and the Turaev Genus\",\"authors\":\"H. Jung, Sungkyung Kang, Seungwon Kim\",\"doi\":\"10.1093/IMRN/RNAB055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.