喷墨印刷混合有机量子点太阳能电池:印刷前后活动的影响

A. Shafiee, E. Ghadiri, M. Salleh, M. Yahaya
{"title":"喷墨印刷混合有机量子点太阳能电池:印刷前后活动的影响","authors":"A. Shafiee, E. Ghadiri, M. Salleh, M. Yahaya","doi":"10.1109/IFETC.2018.8584008","DOIUrl":null,"url":null,"abstract":"Printing has enabled researchers to pattern exact amount of materials on the proper location of different substrates and has been used extensively in electronics. Nevertheless, before, during, and after printing activities are crucial to accomplish final printed products with high-quality. This paper reports optimization of inkjet printing an organic solar cell. Pre- and post-printing activities such as heating the substrate during printing and annealing the film after the printing process were studied. Finally, quantum dots as semiconductor nanoparticles were used to enhance the photovoltaic efficiency of inkjet-printed solar cells. Based on our results any heat treatment during and after the printing process increased the surface roughness of the films and attenuated the device performance. Nevertheless, quantum dots/organic solar cells showed higher Jsc than that of organic solar cells.","PeriodicalId":6609,"journal":{"name":"2018 International Flexible Electronics Technology Conference (IFETC)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inkjet Printed Hybrid Organic-Quantum Dots Solar Cells: Effects of Pre- And Post-Printing Activities\",\"authors\":\"A. Shafiee, E. Ghadiri, M. Salleh, M. Yahaya\",\"doi\":\"10.1109/IFETC.2018.8584008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printing has enabled researchers to pattern exact amount of materials on the proper location of different substrates and has been used extensively in electronics. Nevertheless, before, during, and after printing activities are crucial to accomplish final printed products with high-quality. This paper reports optimization of inkjet printing an organic solar cell. Pre- and post-printing activities such as heating the substrate during printing and annealing the film after the printing process were studied. Finally, quantum dots as semiconductor nanoparticles were used to enhance the photovoltaic efficiency of inkjet-printed solar cells. Based on our results any heat treatment during and after the printing process increased the surface roughness of the films and attenuated the device performance. Nevertheless, quantum dots/organic solar cells showed higher Jsc than that of organic solar cells.\",\"PeriodicalId\":6609,\"journal\":{\"name\":\"2018 International Flexible Electronics Technology Conference (IFETC)\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Flexible Electronics Technology Conference (IFETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFETC.2018.8584008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC.2018.8584008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印刷使研究人员能够在不同基材的适当位置上精确地绘制材料的图案,并已广泛应用于电子领域。然而,印刷前、印刷中、印刷后的活动对于最终实现高质量的印刷产品至关重要。本文报道了有机太阳能电池喷墨打印工艺的优化。研究了印刷前和印刷后的活动,如在印刷过程中加热基材和在印刷过程后退火薄膜。最后,将量子点作为半导体纳米粒子用于提高喷墨打印太阳能电池的光电效率。根据我们的研究结果,在印刷过程中或之后的任何热处理都会增加薄膜的表面粗糙度并降低器件性能。然而,量子点/有机太阳能电池的Jsc高于有机太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inkjet Printed Hybrid Organic-Quantum Dots Solar Cells: Effects of Pre- And Post-Printing Activities
Printing has enabled researchers to pattern exact amount of materials on the proper location of different substrates and has been used extensively in electronics. Nevertheless, before, during, and after printing activities are crucial to accomplish final printed products with high-quality. This paper reports optimization of inkjet printing an organic solar cell. Pre- and post-printing activities such as heating the substrate during printing and annealing the film after the printing process were studied. Finally, quantum dots as semiconductor nanoparticles were used to enhance the photovoltaic efficiency of inkjet-printed solar cells. Based on our results any heat treatment during and after the printing process increased the surface roughness of the films and attenuated the device performance. Nevertheless, quantum dots/organic solar cells showed higher Jsc than that of organic solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信