用于模块化分析的基于数据依赖的关注标记器

Andrea Fornaia, E. Tramontana
{"title":"用于模块化分析的基于数据依赖的关注标记器","authors":"Andrea Fornaia, E. Tramontana","doi":"10.1109/COMPSAC.2017.98","DOIUrl":null,"url":null,"abstract":"Modularity of a software system can be assessed once responsibilities of each method and class have been determined. Generally, developers attribute responsibilities to methods and classes manually. This can be problematic given that it relies on developers judgement and effort. This paper proposes an approach to automatically attribute concern tags to each instructions. The approach is based on taint analysis to determine which code lines are related to each other by data dependence. Moreover, Java APIs provide the tags used to mark code lines. The automatic concern tagging that we bring about is used to find out how responsibilities are spread in the code, and then to suggest refactoring activities in case tangling occurs.","PeriodicalId":6556,"journal":{"name":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","volume":"24 1","pages":"463-468"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DeDuCT: A Data Dependence Based Concern Tagger for Modularity Analysis\",\"authors\":\"Andrea Fornaia, E. Tramontana\",\"doi\":\"10.1109/COMPSAC.2017.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modularity of a software system can be assessed once responsibilities of each method and class have been determined. Generally, developers attribute responsibilities to methods and classes manually. This can be problematic given that it relies on developers judgement and effort. This paper proposes an approach to automatically attribute concern tags to each instructions. The approach is based on taint analysis to determine which code lines are related to each other by data dependence. Moreover, Java APIs provide the tags used to mark code lines. The automatic concern tagging that we bring about is used to find out how responsibilities are spread in the code, and then to suggest refactoring activities in case tangling occurs.\",\"PeriodicalId\":6556,\"journal\":{\"name\":\"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)\",\"volume\":\"24 1\",\"pages\":\"463-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC.2017.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2017.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一旦确定了每个方法和类的职责,就可以评估软件系统的模块化。通常,开发人员手动地将责任归为方法和类。这可能会有问题,因为它依赖于开发人员的判断和努力。本文提出了一种为每条指令自动赋予关注标签的方法。该方法基于污点分析,以确定哪些代码行通过数据依赖关系相互关联。此外,Java api提供了用于标记代码行的标记。我们带来的自动关注标签用于找出责任在代码中的分布情况,然后在发生缠结时建议重构活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeDuCT: A Data Dependence Based Concern Tagger for Modularity Analysis
Modularity of a software system can be assessed once responsibilities of each method and class have been determined. Generally, developers attribute responsibilities to methods and classes manually. This can be problematic given that it relies on developers judgement and effort. This paper proposes an approach to automatically attribute concern tags to each instructions. The approach is based on taint analysis to determine which code lines are related to each other by data dependence. Moreover, Java APIs provide the tags used to mark code lines. The automatic concern tagging that we bring about is used to find out how responsibilities are spread in the code, and then to suggest refactoring activities in case tangling occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信