基于imc的电动增压汽油机增压压力控制器标定

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS
Baitao Xiao, Kelly Tyler, Stolzenfeld Timothy, Christopher. Lu, D. Bell, M. Janković, J. Buckland, J. Rollinger
{"title":"基于imc的电动增压汽油机增压压力控制器标定","authors":"Baitao Xiao, Kelly Tyler, Stolzenfeld Timothy, Christopher. Lu, D. Bell, M. Janković, J. Buckland, J. Rollinger","doi":"10.1115/dscc2019-9038","DOIUrl":null,"url":null,"abstract":"\n In this work, a systematic approach is developed to calibrate a feedback controller for boost pressure control of an electrically assisted turbocharged gasoline engine. The information from the experiments indicates the system can be approximated by a Gain-Integrator-Delay (GID) model which can be robustly identified. Two controllers are designed for two different types of inner loop control (torque/speed) of the electrically assisted turbocharger. The underlying calibration methodology is based on Internal Model Control (IMC). The application of IMC leads to controllers that can be naturally mapped to a classic feedback controller. The plant model is obtained by characterizing the boost system with relay feedback experiments. The calibration methodology as well as the controller designs are demonstrated with a validated simulation platform and good performance is observed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMC-Based Calibration of the Boost Pressure Controller in an Electrically Assisted Turbocharged Gasoline Engine\",\"authors\":\"Baitao Xiao, Kelly Tyler, Stolzenfeld Timothy, Christopher. Lu, D. Bell, M. Janković, J. Buckland, J. Rollinger\",\"doi\":\"10.1115/dscc2019-9038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this work, a systematic approach is developed to calibrate a feedback controller for boost pressure control of an electrically assisted turbocharged gasoline engine. The information from the experiments indicates the system can be approximated by a Gain-Integrator-Delay (GID) model which can be robustly identified. Two controllers are designed for two different types of inner loop control (torque/speed) of the electrically assisted turbocharger. The underlying calibration methodology is based on Internal Model Control (IMC). The application of IMC leads to controllers that can be naturally mapped to a classic feedback controller. The plant model is obtained by characterizing the boost system with relay feedback experiments. The calibration methodology as well as the controller designs are demonstrated with a validated simulation platform and good performance is observed.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,开发了一种系统的方法来校准电辅助涡轮增压汽油发动机增压压力控制的反馈控制器。实验结果表明,该系统可以用增益-积分器-延迟(GID)模型进行逼近,并且具有鲁棒性。两个控制器被设计为两种不同类型的内部回路控制(扭矩/速度)的电动辅助涡轮增压器。基本的校准方法是基于内部模型控制(IMC)。IMC的应用导致控制器可以自然地映射到经典的反馈控制器。通过继电反馈实验对升压系统进行了表征,得到了系统模型。通过验证的仿真平台验证了标定方法和控制器设计,并观察到良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMC-Based Calibration of the Boost Pressure Controller in an Electrically Assisted Turbocharged Gasoline Engine
In this work, a systematic approach is developed to calibrate a feedback controller for boost pressure control of an electrically assisted turbocharged gasoline engine. The information from the experiments indicates the system can be approximated by a Gain-Integrator-Delay (GID) model which can be robustly identified. Two controllers are designed for two different types of inner loop control (torque/speed) of the electrically assisted turbocharger. The underlying calibration methodology is based on Internal Model Control (IMC). The application of IMC leads to controllers that can be naturally mapped to a classic feedback controller. The plant model is obtained by characterizing the boost system with relay feedback experiments. The calibration methodology as well as the controller designs are demonstrated with a validated simulation platform and good performance is observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronic Systems and Control
Mechatronic Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.40
自引率
66.70%
发文量
27
期刊介绍: This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信