结点的Hopf交叉数最多为1

M. Mroczkowski
{"title":"结点的Hopf交叉数最多为1","authors":"M. Mroczkowski","doi":"10.18910/75915","DOIUrl":null,"url":null,"abstract":"We consider diagrams of links in $S^2$ obtained by projection from $S^3$ with the Hopf map and the minimal crossing number for such diagrams. Knots admitting diagrams with at most one crossing are classified. Some properties of these knots are exhibited. In particular, we establish which of these knots are algebraic and, for such knots, give an answer to a problem posed by Fiedler.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Knots with Hopf crossing number at most one\",\"authors\":\"M. Mroczkowski\",\"doi\":\"10.18910/75915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider diagrams of links in $S^2$ obtained by projection from $S^3$ with the Hopf map and the minimal crossing number for such diagrams. Knots admitting diagrams with at most one crossing are classified. Some properties of these knots are exhibited. In particular, we establish which of these knots are algebraic and, for such knots, give an answer to a problem posed by Fiedler.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18910/75915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18910/75915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑由$S^3$投影得到的$S^2$中的连杆图与Hopf映射以及这种图的最小交叉数。允许图最多有一个交叉点的结被分类。揭示了这些结的一些性质。特别地,我们确定了这些结中的哪些是代数的,并且对于这些结,给出了Fiedler提出的问题的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knots with Hopf crossing number at most one
We consider diagrams of links in $S^2$ obtained by projection from $S^3$ with the Hopf map and the minimal crossing number for such diagrams. Knots admitting diagrams with at most one crossing are classified. Some properties of these knots are exhibited. In particular, we establish which of these knots are algebraic and, for such knots, give an answer to a problem posed by Fiedler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信