管道识别空间数据中的主导特征

Roman Flury , Reinhard Furrer
{"title":"管道识别空间数据中的主导特征","authors":"Roman Flury ,&nbsp;Reinhard Furrer","doi":"10.1016/j.jcmds.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Dominant-feature identification decomposes spatial data into several additive components to make different features apparent on each component. It recognizes their dominant features credibly and assesses feature attributes. This paper describes the pipeline to apply this method to regular and irregular lattice data as well as geostatistical data. These implementations are all openly available and templates for each case are provided in an associated git repository. As geostatistical data is typically large, we propose several efficient approximations suitable for such data. Emphasizing the use of these approximations in the context of dominant-feature identification, we apply them to data from a climate model describing the monthly mean diurnal range for the period between the years 2081 and 2100.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000232/pdfft?md5=0e0bc9b76dd06eb66d1da02b06ee7421&pid=1-s2.0-S2772415822000232-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pipeline to identify dominant features in spatial data\",\"authors\":\"Roman Flury ,&nbsp;Reinhard Furrer\",\"doi\":\"10.1016/j.jcmds.2022.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dominant-feature identification decomposes spatial data into several additive components to make different features apparent on each component. It recognizes their dominant features credibly and assesses feature attributes. This paper describes the pipeline to apply this method to regular and irregular lattice data as well as geostatistical data. These implementations are all openly available and templates for each case are provided in an associated git repository. As geostatistical data is typically large, we propose several efficient approximations suitable for such data. Emphasizing the use of these approximations in the context of dominant-feature identification, we apply them to data from a climate model describing the monthly mean diurnal range for the period between the years 2081 and 2100.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000232/pdfft?md5=0e0bc9b76dd06eb66d1da02b06ee7421&pid=1-s2.0-S2772415822000232-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显性特征识别将空间数据分解为多个可加性成分,使每个成分上的不同特征显现出来。它可靠地识别它们的主导特征,并评估特征属性。本文介绍了将该方法应用于规则和不规则格点数据以及地统计数据的流程。这些实现都是公开可用的,每个案例的模板都在相关的git存储库中提供。由于地质统计数据通常很大,我们提出了几种适用于此类数据的有效近似。为了强调在优势特征识别的背景下使用这些近似,我们将它们应用于描述2081年至2100年期间月平均日差的气候模式的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pipeline to identify dominant features in spatial data

Dominant-feature identification decomposes spatial data into several additive components to make different features apparent on each component. It recognizes their dominant features credibly and assesses feature attributes. This paper describes the pipeline to apply this method to regular and irregular lattice data as well as geostatistical data. These implementations are all openly available and templates for each case are provided in an associated git repository. As geostatistical data is typically large, we propose several efficient approximations suitable for such data. Emphasizing the use of these approximations in the context of dominant-feature identification, we apply them to data from a climate model describing the monthly mean diurnal range for the period between the years 2081 and 2100.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信