糖酵解最小希金斯模型的定性分析

IF 2.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
B. Ferčec, M. Mencinger, T. Petek, O. O. Aybar, I. K. Aybar
{"title":"糖酵解最小希金斯模型的定性分析","authors":"B. Ferčec, M. Mencinger, T. Petek, O. O. Aybar, I. K. Aybar","doi":"10.46793/match.90-3.563f","DOIUrl":null,"url":null,"abstract":"Glycolysis, one of the leading metabolic pathways, involves many different periodic oscillations emerging at positive steady states of the biochemical models describing this essential process. One of the models employing the molecular diffusion of intermediates is the Higgins biochemical model to explain sustained oscillations. In this paper, we investigate the center-focus problem for the minimal Higgins model for general values of the model parameters with the help of computational algebra. We demonstrate that the model always has a stable focus point by finding a general form of the first Lyapunov number. Then, varying two of the model parameters, we obtain the first three coefficients of the period function for the stable focus point of the model and prove that the singular point is actually a bi-weak monodromic equilibrium point of type [1, 2]. Additionally, we prove that there are two (small) intervals for a chosen parameter a > 0 for which one critical period bifurcates from this singular point after small perturbations","PeriodicalId":51115,"journal":{"name":"Match-Communications in Mathematical and in Computer Chemistry","volume":"42 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Qualitative Analysis of the Minimal Higgins Model of Glycolysis\",\"authors\":\"B. Ferčec, M. Mencinger, T. Petek, O. O. Aybar, I. K. Aybar\",\"doi\":\"10.46793/match.90-3.563f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycolysis, one of the leading metabolic pathways, involves many different periodic oscillations emerging at positive steady states of the biochemical models describing this essential process. One of the models employing the molecular diffusion of intermediates is the Higgins biochemical model to explain sustained oscillations. In this paper, we investigate the center-focus problem for the minimal Higgins model for general values of the model parameters with the help of computational algebra. We demonstrate that the model always has a stable focus point by finding a general form of the first Lyapunov number. Then, varying two of the model parameters, we obtain the first three coefficients of the period function for the stable focus point of the model and prove that the singular point is actually a bi-weak monodromic equilibrium point of type [1, 2]. Additionally, we prove that there are two (small) intervals for a chosen parameter a > 0 for which one critical period bifurcates from this singular point after small perturbations\",\"PeriodicalId\":51115,\"journal\":{\"name\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Match-Communications in Mathematical and in Computer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46793/match.90-3.563f\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Match-Communications in Mathematical and in Computer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46793/match.90-3.563f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

糖酵解是主要的代谢途径之一,在描述这一基本过程的生化模型的正稳定状态下,涉及许多不同的周期振荡。希金斯生化模型是利用中间产物的分子扩散来解释持续振荡的模型之一。本文利用计算代数的方法,研究了最小希金斯模型参数一般值的中心焦点问题。我们通过寻找第一李雅普诺夫数的一般形式证明了模型总是有一个稳定的焦点。然后,通过改变其中两个模型参数,我们得到了模型稳定焦点的周期函数的前三个系数,并证明了该奇点实际上是一个类型为[1,2]的双弱单平衡点。此外,我们证明了对于所选参数> 0存在两个(小)区间,其中一个临界周期在小扰动后从该奇点分叉
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Analysis of the Minimal Higgins Model of Glycolysis
Glycolysis, one of the leading metabolic pathways, involves many different periodic oscillations emerging at positive steady states of the biochemical models describing this essential process. One of the models employing the molecular diffusion of intermediates is the Higgins biochemical model to explain sustained oscillations. In this paper, we investigate the center-focus problem for the minimal Higgins model for general values of the model parameters with the help of computational algebra. We demonstrate that the model always has a stable focus point by finding a general form of the first Lyapunov number. Then, varying two of the model parameters, we obtain the first three coefficients of the period function for the stable focus point of the model and prove that the singular point is actually a bi-weak monodromic equilibrium point of type [1, 2]. Additionally, we prove that there are two (small) intervals for a chosen parameter a > 0 for which one critical period bifurcates from this singular point after small perturbations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
26.90%
发文量
71
审稿时长
2 months
期刊介绍: MATCH Communications in Mathematical and in Computer Chemistry publishes papers of original research as well as reviews on chemically important mathematical results and non-routine applications of mathematical techniques to chemical problems. A paper acceptable for publication must contain non-trivial mathematics or communicate non-routine computer-based procedures AND have a clear connection to chemistry. Papers are published without any processing or publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信