NtFuzz:在Windows上使用静态二进制分析启用类型感知内核模糊

Jaeseung Choi, Kangsu Kim, Daejin Lee, S. Cha
{"title":"NtFuzz:在Windows上使用静态二进制分析启用类型感知内核模糊","authors":"Jaeseung Choi, Kangsu Kim, Daejin Lee, S. Cha","doi":"10.1109/SP40001.2021.00114","DOIUrl":null,"url":null,"abstract":"Although it is common practice for kernel fuzzers to leverage type information of system calls, current Windows kernel fuzzers do not follow the practice as most system calls are private and largely undocumented. In this paper, we present a practical static binary analyzer that automatically infers system call types on Windows at scale. We incorporate our analyzer to NtFuzz, a type-aware Windows kernel fuzzing framework. To our knowledge, this is the first practical fuzzing system that utilizes scalable binary analysis on a COTS OS. With NtFuzz, we found 11 previously unknown kernel bugs, and earned $25,000 through the bug bounty program offered by Microsoft. All these results confirm the practicality of our system as a kernel fuzzer.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"56 1","pages":"677-693"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"NtFuzz: Enabling Type-Aware Kernel Fuzzing on Windows with Static Binary Analysis\",\"authors\":\"Jaeseung Choi, Kangsu Kim, Daejin Lee, S. Cha\",\"doi\":\"10.1109/SP40001.2021.00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although it is common practice for kernel fuzzers to leverage type information of system calls, current Windows kernel fuzzers do not follow the practice as most system calls are private and largely undocumented. In this paper, we present a practical static binary analyzer that automatically infers system call types on Windows at scale. We incorporate our analyzer to NtFuzz, a type-aware Windows kernel fuzzing framework. To our knowledge, this is the first practical fuzzing system that utilizes scalable binary analysis on a COTS OS. With NtFuzz, we found 11 previously unknown kernel bugs, and earned $25,000 through the bug bounty program offered by Microsoft. All these results confirm the practicality of our system as a kernel fuzzer.\",\"PeriodicalId\":6786,\"journal\":{\"name\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"56 1\",\"pages\":\"677-693\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP40001.2021.00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

尽管内核模糊器利用系统调用的类型信息是一种常见的做法,但当前的Windows内核模糊器并没有遵循这种做法,因为大多数系统调用都是私有的,而且在很大程度上没有记录。在本文中,我们提出了一个实用的静态二进制分析器,它可以大规模地自动推断Windows上的系统调用类型。我们将分析器整合到NtFuzz中,这是一个类型感知的Windows内核模糊测试框架。据我们所知,这是第一个在COTS操作系统上利用可扩展二进制分析的实用模糊测试系统。通过NtFuzz,我们发现了11个以前未知的内核错误,并通过微软提供的错误赏金计划获得了25,000美元。这些结果证实了本系统作为核心模糊器的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NtFuzz: Enabling Type-Aware Kernel Fuzzing on Windows with Static Binary Analysis
Although it is common practice for kernel fuzzers to leverage type information of system calls, current Windows kernel fuzzers do not follow the practice as most system calls are private and largely undocumented. In this paper, we present a practical static binary analyzer that automatically infers system call types on Windows at scale. We incorporate our analyzer to NtFuzz, a type-aware Windows kernel fuzzing framework. To our knowledge, this is the first practical fuzzing system that utilizes scalable binary analysis on a COTS OS. With NtFuzz, we found 11 previously unknown kernel bugs, and earned $25,000 through the bug bounty program offered by Microsoft. All these results confirm the practicality of our system as a kernel fuzzer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信