基于支持向量回归和离散小波分解的转子系统状态长期振动趋势预测

Hang Xie, G. Wen
{"title":"基于支持向量回归和离散小波分解的转子系统状态长期振动趋势预测","authors":"Hang Xie, G. Wen","doi":"10.1109/IWISA.2009.5072946","DOIUrl":null,"url":null,"abstract":"In this paper, an new method is proposed based on support vector regression (SVR) and discrete wavelet decomposition (DWD) for long-term rotor vibration trend forecasting. The feasibility of SVR in long-term vibration trend forecasting is also examined in this paper. And, the discrete wavelet decomposition is used to extract the trend components of vibration time series. Finally, the hybrid prediction model and algorithm of combining SVR and DWD is validated by a group of practical long-term vibration data measured from a flue gas turbine. The results show that the hybrid prediction model possesses more advantageous to forecast long-term state time series than directly using SVR model.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Long-Term Vibration Trend Prediction of Rotor System State Based on Support Vector Regression and Discrete Wavelet Decomposition\",\"authors\":\"Hang Xie, G. Wen\",\"doi\":\"10.1109/IWISA.2009.5072946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an new method is proposed based on support vector regression (SVR) and discrete wavelet decomposition (DWD) for long-term rotor vibration trend forecasting. The feasibility of SVR in long-term vibration trend forecasting is also examined in this paper. And, the discrete wavelet decomposition is used to extract the trend components of vibration time series. Finally, the hybrid prediction model and algorithm of combining SVR and DWD is validated by a group of practical long-term vibration data measured from a flue gas turbine. The results show that the hybrid prediction model possesses more advantageous to forecast long-term state time series than directly using SVR model.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"6 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5072946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于支持向量回归(SVR)和离散小波分解(DWD)的转子长期振动趋势预测方法。本文还探讨了支持向量回归法在长期振动趋势预测中的可行性。并利用离散小波分解提取振动时间序列的趋势分量。最后,通过一组实际的烟机长期振动实测数据验证了SVR和DWD相结合的混合预测模型和算法。结果表明,混合预测模型比直接使用SVR模型更有利于长期状态时间序列的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Term Vibration Trend Prediction of Rotor System State Based on Support Vector Regression and Discrete Wavelet Decomposition
In this paper, an new method is proposed based on support vector regression (SVR) and discrete wavelet decomposition (DWD) for long-term rotor vibration trend forecasting. The feasibility of SVR in long-term vibration trend forecasting is also examined in this paper. And, the discrete wavelet decomposition is used to extract the trend components of vibration time series. Finally, the hybrid prediction model and algorithm of combining SVR and DWD is validated by a group of practical long-term vibration data measured from a flue gas turbine. The results show that the hybrid prediction model possesses more advantageous to forecast long-term state time series than directly using SVR model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信