{"title":"伪半投影模与自同态环","authors":"N. Ha","doi":"10.35634/vm220405","DOIUrl":null,"url":null,"abstract":"A module $M$ is called pseudo semi-projective if, for all $\\alpha,\\beta\\in \\mathrm{End}_R(M)$ with $\\mathrm{Im}(\\alpha)=\\mathrm{Im}(\\beta)$, there holds $\\alpha\\, \\mathrm{End}_R(M)=\\beta\\, \\mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\\mathrm{End}_R(M)$ has the form $\\{s \\in \\mathrm{End}_R(M) | \\mathrm{Im}(s) + \\mathrm{Ker}(h)\\ne M\\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo semi-projective modules and endomorphism rings\",\"authors\":\"N. Ha\",\"doi\":\"10.35634/vm220405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module $M$ is called pseudo semi-projective if, for all $\\\\alpha,\\\\beta\\\\in \\\\mathrm{End}_R(M)$ with $\\\\mathrm{Im}(\\\\alpha)=\\\\mathrm{Im}(\\\\beta)$, there holds $\\\\alpha\\\\, \\\\mathrm{End}_R(M)=\\\\beta\\\\, \\\\mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\\\\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\\\\mathrm{End}_R(M)$ has the form $\\\\{s \\\\in \\\\mathrm{End}_R(M) | \\\\mathrm{Im}(s) + \\\\mathrm{Ker}(h)\\\\ne M\\\\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm220405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm220405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Pseudo semi-projective modules and endomorphism rings
A module $M$ is called pseudo semi-projective if, for all $\alpha,\beta\in \mathrm{End}_R(M)$ with $\mathrm{Im}(\alpha)=\mathrm{Im}(\beta)$, there holds $\alpha\, \mathrm{End}_R(M)=\beta\, \mathrm{End}_R(M)$. In this paper, we study some properties of pseudo semi-projective modules and their endomorphism rings. It is shown that a ring $ R$ is a semilocal ring if and only if each semiprimitive finitely generated right $R$-module is pseudo semi-projective. Moreover, we show that if $M$ is a coretractable pseudo semi-projective module with finite hollow dimension, then $\mathrm{End}_R(M)$ is a semilocal ring and every maximal right ideal of $\mathrm{End}_R(M)$ has the form $\{s \in \mathrm{End}_R(M) | \mathrm{Im}(s) + \mathrm{Ker}(h)\ne M\}$ for some endomorphism $h$ of $M$ with $h(M)$ hollow.