{"title":"秋葵与e-玻璃纤维增强聚丙烯基复合材料物理力学性能的比较研究","authors":"Kamrun N. Keya, Nasrin A. Kona, R. Khan","doi":"10.11648/J.JB.20190302.12","DOIUrl":null,"url":null,"abstract":"Okra fiber (OF) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated using a compression molding technique. To fabricate the composite treated Okra fiber were used. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the composites were found to be 38.5 MPa, 0.68 GPa, 8.2%, 72.5 MPa, 5.56 GPa, 22.87 kJ/m2, and 97 (Shore-A), respectively. Then E-glass fiber (woven)-reinforced polypropylene-based composites (45 wt% fiber) were fabricated and the mechanical properties (TS, TM, Eb%, BS, BM, IS, hardness) were found 80 MPa, 5 GPa, 11%, 81 MPa, 10 GPa, 32 kJ/m2, and 97 (Shore-A), respectively. After that compared E-glass fiber/PP based composites mechanical properties with those of the OF/PP based composites mechanical properties. It was observed that E-glass fiber-based composites showed almost double mechanical properties compared to OF/PP based composite. Water absorption and elongation percentage at break showed different scenario and it was noticed from the experimental study that water absorption and elongation at break (%) of was higher than E-glass based composites. After the flexural test, fracture surfaces of the E-glass/PP and OF/PP composites were investigated using scanning electron microscope (SEM) and the results revealed that E-glass fiber reinforced based composites matrix adhesion less than the E-glass fiber reinforced based composites.","PeriodicalId":73619,"journal":{"name":"Journal of biomaterials","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Physico-Mechanical Properties Between Okra and E-glass Fiber-Reinforced Polypropylene-based Composites\",\"authors\":\"Kamrun N. Keya, Nasrin A. Kona, R. Khan\",\"doi\":\"10.11648/J.JB.20190302.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Okra fiber (OF) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated using a compression molding technique. To fabricate the composite treated Okra fiber were used. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the composites were found to be 38.5 MPa, 0.68 GPa, 8.2%, 72.5 MPa, 5.56 GPa, 22.87 kJ/m2, and 97 (Shore-A), respectively. Then E-glass fiber (woven)-reinforced polypropylene-based composites (45 wt% fiber) were fabricated and the mechanical properties (TS, TM, Eb%, BS, BM, IS, hardness) were found 80 MPa, 5 GPa, 11%, 81 MPa, 10 GPa, 32 kJ/m2, and 97 (Shore-A), respectively. After that compared E-glass fiber/PP based composites mechanical properties with those of the OF/PP based composites mechanical properties. It was observed that E-glass fiber-based composites showed almost double mechanical properties compared to OF/PP based composite. Water absorption and elongation percentage at break showed different scenario and it was noticed from the experimental study that water absorption and elongation at break (%) of was higher than E-glass based composites. After the flexural test, fracture surfaces of the E-glass/PP and OF/PP composites were investigated using scanning electron microscope (SEM) and the results revealed that E-glass fiber reinforced based composites matrix adhesion less than the E-glass fiber reinforced based composites.\",\"PeriodicalId\":73619,\"journal\":{\"name\":\"Journal of biomaterials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.JB.20190302.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JB.20190302.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study of Physico-Mechanical Properties Between Okra and E-glass Fiber-Reinforced Polypropylene-based Composites
Okra fiber (OF) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated using a compression molding technique. To fabricate the composite treated Okra fiber were used. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), bending strength (BS), bending modulus (BM), impact strength (IS) and hardness of the composites were found to be 38.5 MPa, 0.68 GPa, 8.2%, 72.5 MPa, 5.56 GPa, 22.87 kJ/m2, and 97 (Shore-A), respectively. Then E-glass fiber (woven)-reinforced polypropylene-based composites (45 wt% fiber) were fabricated and the mechanical properties (TS, TM, Eb%, BS, BM, IS, hardness) were found 80 MPa, 5 GPa, 11%, 81 MPa, 10 GPa, 32 kJ/m2, and 97 (Shore-A), respectively. After that compared E-glass fiber/PP based composites mechanical properties with those of the OF/PP based composites mechanical properties. It was observed that E-glass fiber-based composites showed almost double mechanical properties compared to OF/PP based composite. Water absorption and elongation percentage at break showed different scenario and it was noticed from the experimental study that water absorption and elongation at break (%) of was higher than E-glass based composites. After the flexural test, fracture surfaces of the E-glass/PP and OF/PP composites were investigated using scanning electron microscope (SEM) and the results revealed that E-glass fiber reinforced based composites matrix adhesion less than the E-glass fiber reinforced based composites.