{"title":"通过触觉反馈的指令识别提高了额肌肌电图界面的可用性","authors":"L. Franco, G. Salvietti, D. Prattichizzo","doi":"10.1109/WHC.2019.8816133","DOIUrl":null,"url":null,"abstract":"This work presents a study on the effectiveness of tactile feedback for the acknowledgement of a correct command detection in an EMG-based interface for the frontalis muscle. EMG interfaces are increasingly used in assistive robotics to control robots exploiting the repeatability and robustness of the electromyographic signal. However, in many application a feedback about the correct detection of an input is often missed and the user has to wait for the device motion in order to understand if his/her will has been correctly detected by the system. We demonstrate with a user study involving fifteen subjects, that a simple vibrotactile feedback can reduce the muscular effort and the time needed to execute a sequence of action commanded by an EMG device. As a case study, an EMG interface for the frontalis muscle has been used, however proposed results could be extended to EMG interfaces designed for other muscles, e.g., for prosthesis or exoskeleton control.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"29 2 1","pages":"574-579"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Command Acknowledge through Tactile Feedback Improves the Usability of an EMG-based Interface for the Frontalis Muscle\",\"authors\":\"L. Franco, G. Salvietti, D. Prattichizzo\",\"doi\":\"10.1109/WHC.2019.8816133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a study on the effectiveness of tactile feedback for the acknowledgement of a correct command detection in an EMG-based interface for the frontalis muscle. EMG interfaces are increasingly used in assistive robotics to control robots exploiting the repeatability and robustness of the electromyographic signal. However, in many application a feedback about the correct detection of an input is often missed and the user has to wait for the device motion in order to understand if his/her will has been correctly detected by the system. We demonstrate with a user study involving fifteen subjects, that a simple vibrotactile feedback can reduce the muscular effort and the time needed to execute a sequence of action commanded by an EMG device. As a case study, an EMG interface for the frontalis muscle has been used, however proposed results could be extended to EMG interfaces designed for other muscles, e.g., for prosthesis or exoskeleton control.\",\"PeriodicalId\":6702,\"journal\":{\"name\":\"2019 IEEE World Haptics Conference (WHC)\",\"volume\":\"29 2 1\",\"pages\":\"574-579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE World Haptics Conference (WHC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHC.2019.8816133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Command Acknowledge through Tactile Feedback Improves the Usability of an EMG-based Interface for the Frontalis Muscle
This work presents a study on the effectiveness of tactile feedback for the acknowledgement of a correct command detection in an EMG-based interface for the frontalis muscle. EMG interfaces are increasingly used in assistive robotics to control robots exploiting the repeatability and robustness of the electromyographic signal. However, in many application a feedback about the correct detection of an input is often missed and the user has to wait for the device motion in order to understand if his/her will has been correctly detected by the system. We demonstrate with a user study involving fifteen subjects, that a simple vibrotactile feedback can reduce the muscular effort and the time needed to execute a sequence of action commanded by an EMG device. As a case study, an EMG interface for the frontalis muscle has been used, however proposed results could be extended to EMG interfaces designed for other muscles, e.g., for prosthesis or exoskeleton control.