极大自不相似感兴趣点检测器

Q1 Computer Science
Federico Tombari, L. D. Stefano
{"title":"极大自不相似感兴趣点检测器","authors":"Federico Tombari, L. D. Stefano","doi":"10.2197/ipsjtcva.7.175","DOIUrl":null,"url":null,"abstract":"We propose a novel interest point detector stemming from the intuition that image patches which are highly dissimilar over a relatively large extent of their surroundings hold the property of being repeatable and distinctive. This concept of contextual self-dissimilarity reverses the key paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local Means filter, which build upon the presence of similar rather than dissimilar patches. Moreover, our approach extends to contextual information the local self-dissimilarity notion embedded in established detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and localization accuracy. As the key principle and machinery of our method are amenable to a variety of data kinds, including multi-channel images and organized 3D measurements, we delineate how to extend the basic formulation in order to deal with range and RGB-D images, such as those provided by consumer depth cameras.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"28 1","pages":"175-188"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Maximal Self-dissimilarity Interest Point Detector\",\"authors\":\"Federico Tombari, L. D. Stefano\",\"doi\":\"10.2197/ipsjtcva.7.175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel interest point detector stemming from the intuition that image patches which are highly dissimilar over a relatively large extent of their surroundings hold the property of being repeatable and distinctive. This concept of contextual self-dissimilarity reverses the key paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local Means filter, which build upon the presence of similar rather than dissimilar patches. Moreover, our approach extends to contextual information the local self-dissimilarity notion embedded in established detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and localization accuracy. As the key principle and machinery of our method are amenable to a variety of data kinds, including multi-channel images and organized 3D measurements, we delineate how to extend the basic formulation in order to deal with range and RGB-D images, such as those provided by consumer depth cameras.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"28 1\",\"pages\":\"175-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种新的兴趣点检测器,这种检测器源于一种直觉,即在相对较大的范围内高度不同的图像斑块具有可重复和独特的特性。上下文自不相似的概念颠覆了最近成功的技术的关键范例,如局部自相似描述符和非局部均值过滤器,它们建立在相似而不是不同补丁的存在上。此外,我们的方法将嵌入在已建立的角样兴趣点检测器中的局部自不相似概念扩展到上下文信息,从而提高了可重复性、独特性和定位精度。由于我们方法的关键原理和机制适用于各种数据类型,包括多通道图像和有组织的3D测量,我们描述了如何扩展基本公式以处理范围和RGB-D图像,例如由消费者深度相机提供的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Maximal Self-dissimilarity Interest Point Detector
We propose a novel interest point detector stemming from the intuition that image patches which are highly dissimilar over a relatively large extent of their surroundings hold the property of being repeatable and distinctive. This concept of contextual self-dissimilarity reverses the key paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local Means filter, which build upon the presence of similar rather than dissimilar patches. Moreover, our approach extends to contextual information the local self-dissimilarity notion embedded in established detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and localization accuracy. As the key principle and machinery of our method are amenable to a variety of data kinds, including multi-channel images and organized 3D measurements, we delineate how to extend the basic formulation in order to deal with range and RGB-D images, such as those provided by consumer depth cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信