{"title":"紫花苋(Amaranthus hybridus L.)在啤酒废水处理土壤上的植物修复潜力","authors":"B. Odiyi, F. Ologundudu, T. Adegbite","doi":"10.21472/bjbs.061308","DOIUrl":null,"url":null,"abstract":"\n Toxicity of heavy metals above the normal threshold constituted a threat to humanity and biodiversity. Phytoremediation has become a novel and emerging technology of cleaning polluted sites through the use of plants. A study was carried out at the screen house located besides the academic building of the Federal University of Technology, Akure, Nigeria, to evaluate the phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on a brewery effluent. The parameters investigated include chlorophyll content, the concentration of the metals in the plants, Bioconcentration Factor (BCF) and Translocation Factor (TF) was studied. Three different concentrations of brewery effluent were used at 50, 100 and 150 mL/5 kg of soil, respectively. The results of this study under controlled conditions indicate that effluent application increased chlorophyll content, reduced plant height and stem girth. Three heavy metals (iron, cadmium, and chromium) were detected in the shoots and leave of both plants after the experimental period. The translocation factor (less than 1) and bioaccumulation factors (greater than 1) were below the permissible limits hence indicating a possible bio-accumulator for the heavy metals investigated. Brewery effluent reduce the plant height but increase the leaf area of A. hybridus under high concentrations which possibly suggest an adaptive mechanism developed by the plant under stress.\n","PeriodicalId":9319,"journal":{"name":"Brazilian Journal of Biological Sciences","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on soil amended with brewery effluent\",\"authors\":\"B. Odiyi, F. Ologundudu, T. Adegbite\",\"doi\":\"10.21472/bjbs.061308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Toxicity of heavy metals above the normal threshold constituted a threat to humanity and biodiversity. Phytoremediation has become a novel and emerging technology of cleaning polluted sites through the use of plants. A study was carried out at the screen house located besides the academic building of the Federal University of Technology, Akure, Nigeria, to evaluate the phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on a brewery effluent. The parameters investigated include chlorophyll content, the concentration of the metals in the plants, Bioconcentration Factor (BCF) and Translocation Factor (TF) was studied. Three different concentrations of brewery effluent were used at 50, 100 and 150 mL/5 kg of soil, respectively. The results of this study under controlled conditions indicate that effluent application increased chlorophyll content, reduced plant height and stem girth. Three heavy metals (iron, cadmium, and chromium) were detected in the shoots and leave of both plants after the experimental period. The translocation factor (less than 1) and bioaccumulation factors (greater than 1) were below the permissible limits hence indicating a possible bio-accumulator for the heavy metals investigated. Brewery effluent reduce the plant height but increase the leaf area of A. hybridus under high concentrations which possibly suggest an adaptive mechanism developed by the plant under stress.\\n\",\"PeriodicalId\":9319,\"journal\":{\"name\":\"Brazilian Journal of Biological Sciences\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21472/bjbs.061308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21472/bjbs.061308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on soil amended with brewery effluent
Toxicity of heavy metals above the normal threshold constituted a threat to humanity and biodiversity. Phytoremediation has become a novel and emerging technology of cleaning polluted sites through the use of plants. A study was carried out at the screen house located besides the academic building of the Federal University of Technology, Akure, Nigeria, to evaluate the phytoremediation potential of Amaranthus hybridus L. (Caryophyllales: Amaranthaceae) on a brewery effluent. The parameters investigated include chlorophyll content, the concentration of the metals in the plants, Bioconcentration Factor (BCF) and Translocation Factor (TF) was studied. Three different concentrations of brewery effluent were used at 50, 100 and 150 mL/5 kg of soil, respectively. The results of this study under controlled conditions indicate that effluent application increased chlorophyll content, reduced plant height and stem girth. Three heavy metals (iron, cadmium, and chromium) were detected in the shoots and leave of both plants after the experimental period. The translocation factor (less than 1) and bioaccumulation factors (greater than 1) were below the permissible limits hence indicating a possible bio-accumulator for the heavy metals investigated. Brewery effluent reduce the plant height but increase the leaf area of A. hybridus under high concentrations which possibly suggest an adaptive mechanism developed by the plant under stress.