长度为2ν+1的实值移位正交有限长序列的快速非周期相关算法

Y. Tanada, Takahiro Matsumoto
{"title":"长度为2ν+1的实值移位正交有限长序列的快速非周期相关算法","authors":"Y. Tanada, Takahiro Matsumoto","doi":"10.1002/ECJC.20301","DOIUrl":null,"url":null,"abstract":"Real-valued shift-orthogonal finite-length sequences are sequences in which the side lobes of the aperiodic autocorrelation function become 0, except for the endpoints of the shift to both sides, and can be applied in pulse compression radar and spread spectrum communications. In this paper, a fast correlation algorithm for efficiently calculating the periodic correlation function is discussed for real-valued shift-orthogonal finite-length sequences with length M=2ν+1. For input data, including a real-valued shift-orthogonal finite-length sequence over a certain range, the value of the aperiodic correlation function is found in a certain shift range. Based on the synthesis of this sequence by the convolution of ν+1 partial sequences, the correlation processing is broken down into correlation processing of the ν+1 stages of partial sequences. As a result, the number of multiplications and the number of additions can be suppressed on the order Mlog2M. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 18– 30, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20301","PeriodicalId":100407,"journal":{"name":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","volume":"38 1","pages":"18-30"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast aperiodic correlation algorithm for real-valued shift-orthogonal finite-length sequence of length 2ν+1\",\"authors\":\"Y. Tanada, Takahiro Matsumoto\",\"doi\":\"10.1002/ECJC.20301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-valued shift-orthogonal finite-length sequences are sequences in which the side lobes of the aperiodic autocorrelation function become 0, except for the endpoints of the shift to both sides, and can be applied in pulse compression radar and spread spectrum communications. In this paper, a fast correlation algorithm for efficiently calculating the periodic correlation function is discussed for real-valued shift-orthogonal finite-length sequences with length M=2ν+1. For input data, including a real-valued shift-orthogonal finite-length sequence over a certain range, the value of the aperiodic correlation function is found in a certain shift range. Based on the synthesis of this sequence by the convolution of ν+1 partial sequences, the correlation processing is broken down into correlation processing of the ν+1 stages of partial sequences. As a result, the number of multiplications and the number of additions can be suppressed on the order Mlog2M. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 18– 30, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20301\",\"PeriodicalId\":100407,\"journal\":{\"name\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"volume\":\"38 1\",\"pages\":\"18-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ECJC.20301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan (Part III: Fundamental Electronic Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ECJC.20301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实值移位正交有限长序列是指除移向两侧的端点外,非周期自相关函数的旁瓣均为0的序列,可用于脉冲压缩雷达和扩频通信。本文讨论了长度为M=2ν+1的实值位移正交有限长序列周期相关函数的快速计算算法。对于输入数据,包括在一定范围内的实值位移-正交有限长序列,在一定的位移范围内找到非周期相关函数的值。在对该序列进行ν+1部分序列卷积合成的基础上,将相关处理分解为部分序列ν+1阶段的相关处理。因此,乘法的数量和加法的数量可以被抑制在Mlog2M的量级上。©2007 Wiley期刊公司电子工程学报,2009,35 (6):1145 - 1145;在线发表于Wiley InterScience (www.interscience.wiley.com)。DOI 10.1002 / ecjc.20301
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast aperiodic correlation algorithm for real-valued shift-orthogonal finite-length sequence of length 2ν+1
Real-valued shift-orthogonal finite-length sequences are sequences in which the side lobes of the aperiodic autocorrelation function become 0, except for the endpoints of the shift to both sides, and can be applied in pulse compression radar and spread spectrum communications. In this paper, a fast correlation algorithm for efficiently calculating the periodic correlation function is discussed for real-valued shift-orthogonal finite-length sequences with length M=2ν+1. For input data, including a real-valued shift-orthogonal finite-length sequence over a certain range, the value of the aperiodic correlation function is found in a certain shift range. Based on the synthesis of this sequence by the convolution of ν+1 partial sequences, the correlation processing is broken down into correlation processing of the ν+1 stages of partial sequences. As a result, the number of multiplications and the number of additions can be suppressed on the order Mlog2M. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(9): 18– 30, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20301
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信