用Nikiforov-Uvarov方法求解逆二次Yukawa和逆二次Hellmann势Schrödinger方程

B. Ita, A. Ikeuba
{"title":"用Nikiforov-Uvarov方法求解逆二次Yukawa和逆二次Hellmann势Schrödinger方程","authors":"B. Ita, A. Ikeuba","doi":"10.1155/2013/582610","DOIUrl":null,"url":null,"abstract":"The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation <path id=\"x1D460\" d=\"M352 391q0 -31 -27 -44q-14 -7 -24 6q-39 48 -84 48q-23 0 -39.5 -15t-16.5 -40q0 -43 73 -90q49 -32 70 -58t21 -57q0 -58 -62 -105.5t-129 -47.5q-40 0 -75.5 25t-35.5 52q0 28 32 46q7 4 15 3t11 -6q19 -31 48.5 -50.5t54.5 -19.5q34 0 54 19.5t20 42.5q0 43 -65 81\nq-97 56 -97 123q0 50 51 96q19 17 58 32.5t62 15.5q37 0 61 -18t24 -39z\" /> <path id=\"x1D45F\" d=\"M393 379q-9 -16 -28 -29q-15 -10 -23 -2q-19 19 -36 19q-21 0 -52 -38q-57 -72 -82 -126l-40 -197q-23 -3 -75 -18l-7 7q49 196 74 335q7 43 -2 43q-7 0 -30 -14.5t-47 -37.5l-16 23q37 42 82 73t67 31q41 0 15 -113l-11 -50h4q41 71 85 117t77 46q29 0 45 -26\nq13 -21 0 -43z\" /> . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.","PeriodicalId":15106,"journal":{"name":"原子与分子物理学报","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method\",\"authors\":\"B. Ita, A. Ikeuba\",\"doi\":\"10.1155/2013/582610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation <path id=\\\"x1D460\\\" d=\\\"M352 391q0 -31 -27 -44q-14 -7 -24 6q-39 48 -84 48q-23 0 -39.5 -15t-16.5 -40q0 -43 73 -90q49 -32 70 -58t21 -57q0 -58 -62 -105.5t-129 -47.5q-40 0 -75.5 25t-35.5 52q0 28 32 46q7 4 15 3t11 -6q19 -31 48.5 -50.5t54.5 -19.5q34 0 54 19.5t20 42.5q0 43 -65 81\\nq-97 56 -97 123q0 50 51 96q19 17 58 32.5t62 15.5q37 0 61 -18t24 -39z\\\" /> <path id=\\\"x1D45F\\\" d=\\\"M393 379q-9 -16 -28 -29q-15 -10 -23 -2q-19 19 -36 19q-21 0 -52 -38q-57 -72 -82 -126l-40 -197q-23 -3 -75 -18l-7 7q49 196 74 335q7 43 -2 43q-7 0 -30 -14.5t-47 -37.5l-16 23q37 42 82 73t67 31q41 0 15 -113l-11 -50h4q41 71 85 117t77 46q29 0 45 -26\\nq13 -21 0 -43z\\\" /> . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.\",\"PeriodicalId\":15106,\"journal\":{\"name\":\"原子与分子物理学报\",\"volume\":\"26 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子与分子物理学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/582610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子与分子物理学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1155/2013/582610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

利用Nikiforov-Uvarov方法,给出了任意角动量量子数具有逆二次Yukawa势和逆二次Hellmann势的薛定谔方程的解。利用拉盖尔多项式得到了束缚态能量特征值和相应的非归一化特征函数。NU方法与广义雅可比多项式的解有关。在NU方法中,利用坐标变换将薛定谔方程化为超几何型的广义方程。然后,该方程产生一种形式,其多项式解由著名的罗德里格斯关系给出。将IQYIQH势引入薛定谔方程后,得到的结果方程进一步变换,得到了具有四种不同可能形式的多项式。在这些形式中,只有一种形式适合用于获得薛定谔方程的能量特征值和相应的特征函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method
The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5637
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信