{"title":"用Nikiforov-Uvarov方法求解逆二次Yukawa和逆二次Hellmann势Schrödinger方程","authors":"B. Ita, A. Ikeuba","doi":"10.1155/2013/582610","DOIUrl":null,"url":null,"abstract":"The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation <path id=\"x1D460\" d=\"M352 391q0 -31 -27 -44q-14 -7 -24 6q-39 48 -84 48q-23 0 -39.5 -15t-16.5 -40q0 -43 73 -90q49 -32 70 -58t21 -57q0 -58 -62 -105.5t-129 -47.5q-40 0 -75.5 25t-35.5 52q0 28 32 46q7 4 15 3t11 -6q19 -31 48.5 -50.5t54.5 -19.5q34 0 54 19.5t20 42.5q0 43 -65 81\nq-97 56 -97 123q0 50 51 96q19 17 58 32.5t62 15.5q37 0 61 -18t24 -39z\" /> <path id=\"x1D45F\" d=\"M393 379q-9 -16 -28 -29q-15 -10 -23 -2q-19 19 -36 19q-21 0 -52 -38q-57 -72 -82 -126l-40 -197q-23 -3 -75 -18l-7 7q49 196 74 335q7 43 -2 43q-7 0 -30 -14.5t-47 -37.5l-16 23q37 42 82 73t67 31q41 0 15 -113l-11 -50h4q41 71 85 117t77 46q29 0 45 -26\nq13 -21 0 -43z\" /> . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.","PeriodicalId":15106,"journal":{"name":"原子与分子物理学报","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method\",\"authors\":\"B. Ita, A. Ikeuba\",\"doi\":\"10.1155/2013/582610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation <path id=\\\"x1D460\\\" d=\\\"M352 391q0 -31 -27 -44q-14 -7 -24 6q-39 48 -84 48q-23 0 -39.5 -15t-16.5 -40q0 -43 73 -90q49 -32 70 -58t21 -57q0 -58 -62 -105.5t-129 -47.5q-40 0 -75.5 25t-35.5 52q0 28 32 46q7 4 15 3t11 -6q19 -31 48.5 -50.5t54.5 -19.5q34 0 54 19.5t20 42.5q0 43 -65 81\\nq-97 56 -97 123q0 50 51 96q19 17 58 32.5t62 15.5q37 0 61 -18t24 -39z\\\" /> <path id=\\\"x1D45F\\\" d=\\\"M393 379q-9 -16 -28 -29q-15 -10 -23 -2q-19 19 -36 19q-21 0 -52 -38q-57 -72 -82 -126l-40 -197q-23 -3 -75 -18l-7 7q49 196 74 335q7 43 -2 43q-7 0 -30 -14.5t-47 -37.5l-16 23q37 42 82 73t67 31q41 0 15 -113l-11 -50h4q41 71 85 117t77 46q29 0 45 -26\\nq13 -21 0 -43z\\\" /> . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.\",\"PeriodicalId\":15106,\"journal\":{\"name\":\"原子与分子物理学报\",\"volume\":\"26 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子与分子物理学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/582610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子与分子物理学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1155/2013/582610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solutions to the Schrödinger Equation with Inversely Quadratic Yukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method
The solutions to the Schrodinger equation with inversely quadratic Yukawa and inversely quadratic Hellmann (IQYIQH) potential for any angular momentum quantum number have been presented using the Nikiforov-Uvarov method. The bound state energy eigenvalues and the corresponding unnormalized eigenfunctions are obtained in terms of the Laguerre polynomials. The NU method is related to the solutions in terms of generalized Jacobi polynomials. In the NU method, the Schrodinger equation is reduced to a generalized equation of hypergeometric type using the coordinate transformation . The equation then yields a form whose polynomial solutions are given by the well-known Rodrigues relation. With the introduction of the IQYIQH potential into the Schrodinger equation, the resultant equation is further transformed in such a way that certain polynomials with four different possible forms are obtained. Out of these forms, only one form is suitable for use in obtaining the energy eigenvalues and the corresponding eigenfunctions of the Schrodinger equation.