众包中工资确定与在线任务分配的改进逼近算法

Yuya Hikima, Yasunori Akagi, Hideaki Kim, Taichi Asami
{"title":"众包中工资确定与在线任务分配的改进逼近算法","authors":"Yuya Hikima, Yasunori Akagi, Hideaki Kim, Taichi Asami","doi":"10.1609/aaai.v37i4.25512","DOIUrl":null,"url":null,"abstract":"Crowd-sourcing has attracted much attention due to its growing importance to society, and numerous studies have been conducted on task allocation and wage determination. Recent works have focused on optimizing task allocation and workers' wages, simultaneously. However, existing methods do not provide good solutions for real-world crowd-sourcing platforms due to the low approximation ratio or myopic problem settings. We tackle an optimization problem for wage determination and online task allocation in crowd-sourcing and propose a fast 1-1/(k+3)^(1/2)-approximation algorithm, where k is the minimum of tasks' budgets (numbers of possible assignments). This approximation ratio is greater than or equal to the existing method. The proposed method reduces the tackled problem to a non-convex multi-period continuous optimization problem by approximating the objective function. Then, the method transforms the reduced problem into a minimum convex cost flow problem, which is a well-known combinatorial optimization problem, and solves it by the capacity scaling algorithm. Synthetic experiments and simulation experiments using real crowd-sourcing data show that the proposed method solves the problem faster and outputs higher objective values than existing methods.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"11 1","pages":"3977-3986"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Approximation Algorithm for Wage Determination and Online Task Allocation in Crowd-Sourcing\",\"authors\":\"Yuya Hikima, Yasunori Akagi, Hideaki Kim, Taichi Asami\",\"doi\":\"10.1609/aaai.v37i4.25512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd-sourcing has attracted much attention due to its growing importance to society, and numerous studies have been conducted on task allocation and wage determination. Recent works have focused on optimizing task allocation and workers' wages, simultaneously. However, existing methods do not provide good solutions for real-world crowd-sourcing platforms due to the low approximation ratio or myopic problem settings. We tackle an optimization problem for wage determination and online task allocation in crowd-sourcing and propose a fast 1-1/(k+3)^(1/2)-approximation algorithm, where k is the minimum of tasks' budgets (numbers of possible assignments). This approximation ratio is greater than or equal to the existing method. The proposed method reduces the tackled problem to a non-convex multi-period continuous optimization problem by approximating the objective function. Then, the method transforms the reduced problem into a minimum convex cost flow problem, which is a well-known combinatorial optimization problem, and solves it by the capacity scaling algorithm. Synthetic experiments and simulation experiments using real crowd-sourcing data show that the proposed method solves the problem faster and outputs higher objective values than existing methods.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"11 1\",\"pages\":\"3977-3986\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i4.25512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i4.25512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众包因其在社会中的重要性而备受关注,在任务分配和工资确定方面进行了大量研究。最近的研究主要集中在同时优化任务分配和工人工资。然而,现有的方法由于近似比低或问题设置短视,并不能很好地解决现实世界的众包平台。我们解决了众包中工资确定和在线任务分配的优化问题,并提出了一个快速的1-1/(k+3)^(1/2)-近似算法,其中k是任务预算的最小值(可能分配的数量)。该近似比大于或等于现有方法。该方法通过逼近目标函数,将所处理的问题简化为非凸多周期连续优化问题。然后,该方法将约简后的问题转化为一个著名的组合优化问题——最小凸代价流问题,并采用容量缩放算法求解。基于真实众包数据的综合实验和仿真实验表明,该方法比现有方法解决问题的速度更快,输出的目标值更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Approximation Algorithm for Wage Determination and Online Task Allocation in Crowd-Sourcing
Crowd-sourcing has attracted much attention due to its growing importance to society, and numerous studies have been conducted on task allocation and wage determination. Recent works have focused on optimizing task allocation and workers' wages, simultaneously. However, existing methods do not provide good solutions for real-world crowd-sourcing platforms due to the low approximation ratio or myopic problem settings. We tackle an optimization problem for wage determination and online task allocation in crowd-sourcing and propose a fast 1-1/(k+3)^(1/2)-approximation algorithm, where k is the minimum of tasks' budgets (numbers of possible assignments). This approximation ratio is greater than or equal to the existing method. The proposed method reduces the tackled problem to a non-convex multi-period continuous optimization problem by approximating the objective function. Then, the method transforms the reduced problem into a minimum convex cost flow problem, which is a well-known combinatorial optimization problem, and solves it by the capacity scaling algorithm. Synthetic experiments and simulation experiments using real crowd-sourcing data show that the proposed method solves the problem faster and outputs higher objective values than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信