基于高阶误差统计的自适应滤波器

S. Cho, Sang Duck Kim
{"title":"基于高阶误差统计的自适应滤波器","authors":"S. Cho, Sang Duck Kim","doi":"10.1109/APCAS.1996.569231","DOIUrl":null,"url":null,"abstract":"This paper presents convergence analyses of the stochastic gradient adaptive algorithms based on high order error power criteria. In particular, our attention has focused on investigating the statistical behaviour of the least mean absolute third (LMAT) and the least mean fourth (LMF) adaptive algorithms. For each algorithm, under a set of mild assumptions, we have derived nonlinear evolution equations that characterize the mean and mean-squared behaviour of the algorithm. Computer simulation examples show fairly good agreement between the theoretical and actual behaviour of the two algorithms.","PeriodicalId":20507,"journal":{"name":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","volume":"35 1","pages":"109-112"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Adaptive filters based on the high order error statistics\",\"authors\":\"S. Cho, Sang Duck Kim\",\"doi\":\"10.1109/APCAS.1996.569231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents convergence analyses of the stochastic gradient adaptive algorithms based on high order error power criteria. In particular, our attention has focused on investigating the statistical behaviour of the least mean absolute third (LMAT) and the least mean fourth (LMF) adaptive algorithms. For each algorithm, under a set of mild assumptions, we have derived nonlinear evolution equations that characterize the mean and mean-squared behaviour of the algorithm. Computer simulation examples show fairly good agreement between the theoretical and actual behaviour of the two algorithms.\",\"PeriodicalId\":20507,\"journal\":{\"name\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"volume\":\"35 1\",\"pages\":\"109-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCAS.1996.569231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCAS.1996.569231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文给出了基于高阶误差功率准则的随机梯度自适应算法的收敛性分析。特别是,我们的注意力集中在研究最小平均绝对三分之一(LMAT)和最小平均四分之一(LMF)自适应算法的统计行为。对于每个算法,在一组温和的假设下,我们推导了非线性演化方程,该方程表征了算法的均值和均方行为。计算机仿真实例表明,这两种算法的理论性能和实际性能具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive filters based on the high order error statistics
This paper presents convergence analyses of the stochastic gradient adaptive algorithms based on high order error power criteria. In particular, our attention has focused on investigating the statistical behaviour of the least mean absolute third (LMAT) and the least mean fourth (LMF) adaptive algorithms. For each algorithm, under a set of mild assumptions, we have derived nonlinear evolution equations that characterize the mean and mean-squared behaviour of the algorithm. Computer simulation examples show fairly good agreement between the theoretical and actual behaviour of the two algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信