{"title":"最大似然译码下线性码的性能分析:教程","authors":"I. Sason, S. Shamai","doi":"10.1561/0100000009","DOIUrl":null,"url":null,"abstract":"This article is focused on the performance evaluation of linear codes under optimal maximum-likelihood (ML) decoding. Though the ML decoding algorithm is prohibitively complex for most practical codes, their performance analysis under ML decoding allows to predict their performance without resorting to computer simulations. It also provides a benchmark for testing the sub-optimality of iterative (or other practical) decoding algorithms. This analysis also establishes the goodness of linear codes (or ensembles), determined by the gap between their achievable rates under optimal ML decoding and information theoretical limits. In this article, upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, we discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, we address de Caen's based bounds and their improvements, and also consider sphere-packing bounds with their recent improvements targeting codes of moderate block lengths.","PeriodicalId":45236,"journal":{"name":"Foundations and Trends in Communications and Information Theory","volume":"61 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2006-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"161","resultStr":"{\"title\":\"Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial\",\"authors\":\"I. Sason, S. Shamai\",\"doi\":\"10.1561/0100000009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is focused on the performance evaluation of linear codes under optimal maximum-likelihood (ML) decoding. Though the ML decoding algorithm is prohibitively complex for most practical codes, their performance analysis under ML decoding allows to predict their performance without resorting to computer simulations. It also provides a benchmark for testing the sub-optimality of iterative (or other practical) decoding algorithms. This analysis also establishes the goodness of linear codes (or ensembles), determined by the gap between their achievable rates under optimal ML decoding and information theoretical limits. In this article, upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, we discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, we address de Caen's based bounds and their improvements, and also consider sphere-packing bounds with their recent improvements targeting codes of moderate block lengths.\",\"PeriodicalId\":45236,\"journal\":{\"name\":\"Foundations and Trends in Communications and Information Theory\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2006-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"161\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Communications and Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/0100000009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Communications and Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0100000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial
This article is focused on the performance evaluation of linear codes under optimal maximum-likelihood (ML) decoding. Though the ML decoding algorithm is prohibitively complex for most practical codes, their performance analysis under ML decoding allows to predict their performance without resorting to computer simulations. It also provides a benchmark for testing the sub-optimality of iterative (or other practical) decoding algorithms. This analysis also establishes the goodness of linear codes (or ensembles), determined by the gap between their achievable rates under optimal ML decoding and information theoretical limits. In this article, upper and lower bounds on the error probability of linear codes under ML decoding are surveyed and applied to codes and ensembles of codes on graphs. For upper bounds, we discuss various bounds where focus is put on Gallager bounding techniques and their relation to a variety of other reported bounds. Within the class of lower bounds, we address de Caen's based bounds and their improvements, and also consider sphere-packing bounds with their recent improvements targeting codes of moderate block lengths.
期刊介绍:
Foundations and Trends® in Communications and Information Theory publishes survey and tutorial articles in the following topics: - Coded modulation - Coding theory and practice - Communication complexity - Communication system design - Cryptology and data security - Data compression - Data networks - Demodulation and Equalization - Denoising - Detection and estimation - Information theory and statistics - Information theory and computer science - Joint source/channel coding - Modulation and signal design - Multiuser detection - Multiuser information theory