正则化算子外推算法

IF 0.1
V. Semenov, O. Kharkov
{"title":"正则化算子外推算法","authors":"V. Semenov, O. Kharkov","doi":"10.17721/2706-9699.2023.1.02","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of new algorithm for solving variational inequalities in Hilbert spaces. The proposed algorithm is a variant of the operator extrapolation method regularized using the Halpern scheme. The algorithm has an advantage over the Korpelevich extragradient method and the method of extrapolation from the past in terms of the amount of calculations required for the iterative step. For variational inequalities with monotone, Lipschitz continuous operators acting in Hilbert space, a theorem on strong convergence of the method is proved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE REGULARIZED OPERATOR EXTRAPOLATION ALGORITHM\",\"authors\":\"V. Semenov, O. Kharkov\",\"doi\":\"10.17721/2706-9699.2023.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the study of new algorithm for solving variational inequalities in Hilbert spaces. The proposed algorithm is a variant of the operator extrapolation method regularized using the Halpern scheme. The algorithm has an advantage over the Korpelevich extragradient method and the method of extrapolation from the past in terms of the amount of calculations required for the iterative step. For variational inequalities with monotone, Lipschitz continuous operators acting in Hilbert space, a theorem on strong convergence of the method is proved.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2023.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2023.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究求解希尔伯特空间中变分不等式的新算法。该算法是使用Halpern格式正则化的算子外推方法的一种变体。在迭代步骤所需的计算量方面,该算法比Korpelevich外推法和过去的外推法有优势。对于Hilbert空间中具有单调的Lipschitz连续算子的变分不等式,证明了该方法的强收敛性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE REGULARIZED OPERATOR EXTRAPOLATION ALGORITHM
This work is devoted to the study of new algorithm for solving variational inequalities in Hilbert spaces. The proposed algorithm is a variant of the operator extrapolation method regularized using the Halpern scheme. The algorithm has an advantage over the Korpelevich extragradient method and the method of extrapolation from the past in terms of the amount of calculations required for the iterative step. For variational inequalities with monotone, Lipschitz continuous operators acting in Hilbert space, a theorem on strong convergence of the method is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信