cx²形式的广义梅森数

IF 0.3 Q4 MATHEMATICS
Azizul Hoque
{"title":"cx²形式的广义梅森数","authors":"Azizul Hoque","doi":"10.33039/ami.2022.05.002","DOIUrl":null,"url":null,"abstract":"Generalized Mersenne numbers are defined as 𝑀 𝑝,𝑛 = 𝑝 𝑛 − 𝑝 +1 , where 𝑝 is a prime and 𝑛 is a positive integer. Here, we prove that for each pair ( 𝑐, 𝑝 ) with 𝑐 ≥ 1 an integer, there is at most one 𝑀 𝑝,𝑛 of the form 𝑐𝑥 2 with a few exceptions.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"32 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Mersenne numbers of the form cx²\",\"authors\":\"Azizul Hoque\",\"doi\":\"10.33039/ami.2022.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized Mersenne numbers are defined as 𝑀 𝑝,𝑛 = 𝑝 𝑛 − 𝑝 +1 , where 𝑝 is a prime and 𝑛 is a positive integer. Here, we prove that for each pair ( 𝑐, 𝑝 ) with 𝑐 ≥ 1 an integer, there is at most one 𝑀 𝑝,𝑛 of the form 𝑐𝑥 2 with a few exceptions.\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/ami.2022.05.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2022.05.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

广义梅森数定义为𝑀𝑝,𝑛=𝑝𝑛−𝑝+1,其中𝑝是素数,𝑛是正整数。在这里,我们证明了对于𝑐≥1为整数的每一对(𝑐,𝑝),除了少数例外,最多有一个形式为𝑐≥1的𝑀𝑝,𝑛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Mersenne numbers of the form cx²
Generalized Mersenne numbers are defined as 𝑀 𝑝,𝑛 = 𝑝 𝑛 − 𝑝 +1 , where 𝑝 is a prime and 𝑛 is a positive integer. Here, we prove that for each pair ( 𝑐, 𝑝 ) with 𝑐 ≥ 1 an integer, there is at most one 𝑀 𝑝,𝑛 of the form 𝑐𝑥 2 with a few exceptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信