单层和非常紧密的频带间距频率选择表面,具有增强的隔离

IF 1.2 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu-Xu Chen, Guobin Wan, Xin Ma, Bin Fu, Xinhui Jiao, Nan Wang
{"title":"单层和非常紧密的频带间距频率选择表面,具有增强的隔离","authors":"Yu-Xu Chen, Guobin Wan, Xin Ma, Bin Fu, Xinhui Jiao, Nan Wang","doi":"10.1080/09205071.2023.2243256","DOIUrl":null,"url":null,"abstract":"An ultrathin and very closely located dual-band frequency selective surface (FSS) with enhanced isolation is proposed in this letter. The unit cell consists of two typical concentric hexagon rings, with several stubs loaded on each side of the inner ring. Through the stub-loaded configuration, the mutual coupling of adjacent resonators is highly decoupled and a very close band spacing FSS with better isolation can be achieved, and the ratio of the two operating bands can be as low as 1.06. Additionally, due to the independent resonant frequencies, the band ratio can be set over a wide range, from 1.06–2.43. Furthermore, the corresponding equivalent circuit model (ECM) is developed and analyzed for better comprehension of the underlying mechanisms of the proposed FSS. The validity of the design is then checked with a prototype, and the measured results show good agreement with the simulated ones.","PeriodicalId":15650,"journal":{"name":"Journal of Electromagnetic Waves and Applications","volume":"37 1","pages":"1425 - 1434"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A single layer and very close band spacing frequency selective surface with enhanced isolation\",\"authors\":\"Yu-Xu Chen, Guobin Wan, Xin Ma, Bin Fu, Xinhui Jiao, Nan Wang\",\"doi\":\"10.1080/09205071.2023.2243256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrathin and very closely located dual-band frequency selective surface (FSS) with enhanced isolation is proposed in this letter. The unit cell consists of two typical concentric hexagon rings, with several stubs loaded on each side of the inner ring. Through the stub-loaded configuration, the mutual coupling of adjacent resonators is highly decoupled and a very close band spacing FSS with better isolation can be achieved, and the ratio of the two operating bands can be as low as 1.06. Additionally, due to the independent resonant frequencies, the band ratio can be set over a wide range, from 1.06–2.43. Furthermore, the corresponding equivalent circuit model (ECM) is developed and analyzed for better comprehension of the underlying mechanisms of the proposed FSS. The validity of the design is then checked with a prototype, and the measured results show good agreement with the simulated ones.\",\"PeriodicalId\":15650,\"journal\":{\"name\":\"Journal of Electromagnetic Waves and Applications\",\"volume\":\"37 1\",\"pages\":\"1425 - 1434\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromagnetic Waves and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205071.2023.2243256\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromagnetic Waves and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205071.2023.2243256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种具有增强隔离性的超薄且位置非常近的双频频率选择表面(FSS)。单元电池由两个典型的同心圆六边形环组成,内环的每一侧都装有几个存根。通过存根负载配置,相邻谐振腔的相互耦合得到了高度解耦,实现了非常紧密的频带间距和较好的隔离,两个工作频带的比值可低至1.06。此外,由于谐振频率独立,可以在1.06-2.43的范围内设置频带比。此外,为了更好地理解所提出的FSS的潜在机制,开发和分析了相应的等效电路模型(ECM)。通过样机验证了设计的有效性,实测结果与仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A single layer and very close band spacing frequency selective surface with enhanced isolation
An ultrathin and very closely located dual-band frequency selective surface (FSS) with enhanced isolation is proposed in this letter. The unit cell consists of two typical concentric hexagon rings, with several stubs loaded on each side of the inner ring. Through the stub-loaded configuration, the mutual coupling of adjacent resonators is highly decoupled and a very close band spacing FSS with better isolation can be achieved, and the ratio of the two operating bands can be as low as 1.06. Additionally, due to the independent resonant frequencies, the band ratio can be set over a wide range, from 1.06–2.43. Furthermore, the corresponding equivalent circuit model (ECM) is developed and analyzed for better comprehension of the underlying mechanisms of the proposed FSS. The validity of the design is then checked with a prototype, and the measured results show good agreement with the simulated ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electromagnetic Waves and Applications
Journal of Electromagnetic Waves and Applications 物理-工程:电子与电气
CiteScore
3.60
自引率
7.70%
发文量
116
审稿时长
3.3 months
期刊介绍: Journal of Electromagnetic Waves and Applications covers all aspects of electromagnetic wave theory and its applications. It publishes original papers and review articles on new theories, methodologies, and computational techniques, as well as interpretations of both theoretical and experimental results. The scope of this Journal remains broad and includes the following topics: wave propagation theory propagation in random media waves in composites and amorphous materials optical and millimeter wave techniques fiber/waveguide optics optical sensing sub-micron structures nano-optics and sub-wavelength effects photonics and plasmonics atmospherics and ionospheric effects on wave propagation geophysical subsurface probing remote sensing inverse scattering antenna theory and applications fields and network theory transients radar measurements and applications active experiments using space vehicles electromagnetic compatibility and interferometry medical applications and biological effects ferrite devices high power devices and systems numerical methods The aim of this Journal is to report recent advancements and modern developments in the electromagnetic science and new exciting applications covering the aforementioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信