基于子矩阵约束的局部结构低秩磁共振图像重建

X. Chen, Wenchuan Wu, M. Chiew
{"title":"基于子矩阵约束的局部结构低秩磁共振图像重建","authors":"X. Chen, Wenchuan Wu, M. Chiew","doi":"10.1109/ISBI52829.2022.9761692","DOIUrl":null,"url":null,"abstract":"Image reconstruction methods based on structured low-rank matrix completion have drawn growing interest in magnetic resonance imaging. In this work, we propose a locally structured low-rank image reconstruction method which imposes low-rank constraints on submatrices of the Hankel structured k-space data matrix. Simulation experiments based on numerical phantoms and experimental data demonstrated that the proposed method achieves robust and significant improvements over the conventional, global structured low-rank methods across a variety of structured matrix constructions, sampling patterns and noise levels, at the cost of slower convergence speed only.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"55 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Locally Structured Low-Rank MR Image Reconstruction using Submatrix Constraints\",\"authors\":\"X. Chen, Wenchuan Wu, M. Chiew\",\"doi\":\"10.1109/ISBI52829.2022.9761692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image reconstruction methods based on structured low-rank matrix completion have drawn growing interest in magnetic resonance imaging. In this work, we propose a locally structured low-rank image reconstruction method which imposes low-rank constraints on submatrices of the Hankel structured k-space data matrix. Simulation experiments based on numerical phantoms and experimental data demonstrated that the proposed method achieves robust and significant improvements over the conventional, global structured low-rank methods across a variety of structured matrix constructions, sampling patterns and noise levels, at the cost of slower convergence speed only.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"55 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于结构化低秩矩阵补全的图像重建方法在磁共振成像领域引起了越来越多的兴趣。在这项工作中,我们提出了一种局部结构化低秩图像重建方法,该方法对Hankel结构化k空间数据矩阵的子矩阵施加低秩约束。基于数值模型和实验数据的仿真实验表明,与传统的全局结构化低秩方法相比,该方法在各种结构化矩阵结构、采样模式和噪声水平上取得了鲁棒性和显著的改进,但代价是收敛速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally Structured Low-Rank MR Image Reconstruction using Submatrix Constraints
Image reconstruction methods based on structured low-rank matrix completion have drawn growing interest in magnetic resonance imaging. In this work, we propose a locally structured low-rank image reconstruction method which imposes low-rank constraints on submatrices of the Hankel structured k-space data matrix. Simulation experiments based on numerical phantoms and experimental data demonstrated that the proposed method achieves robust and significant improvements over the conventional, global structured low-rank methods across a variety of structured matrix constructions, sampling patterns and noise levels, at the cost of slower convergence speed only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信