两级问题与两阶段近端算法

IF 0.1
V. Semenov, Yana Vedel, S. Denisov
{"title":"两级问题与两阶段近端算法","authors":"V. Semenov, Yana Vedel, S. Denisov","doi":"10.17721/2706-9699.2021.2.07","DOIUrl":null,"url":null,"abstract":"In this paper, a two-level problem is considered: a variational inequality on the set of solutions to the equilibrium problem. An example of such a problem is the search for the normal Nash equilibrium. To solve this problem, two algorithms are proposed. The first combines the ideas of a two-step proximal method and iterative regularization. And the second algorithm is an adaptive version of the first with a parameter update rule that does not use the values of the Lipschitz constants of the bifunction. Theorems on strong convergence of algorithms are proved for monotone bifunctions of Lipschitz type and strongly monotone Lipschitz operators. It is shown that the proposed algorithms can be applied to monotone two-level variational inequalities in Hilbert spaces.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"29 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TWO-LEVEL PROBLEMS AND TWO-STAGE PROXIMAL ALGORITHM\",\"authors\":\"V. Semenov, Yana Vedel, S. Denisov\",\"doi\":\"10.17721/2706-9699.2021.2.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a two-level problem is considered: a variational inequality on the set of solutions to the equilibrium problem. An example of such a problem is the search for the normal Nash equilibrium. To solve this problem, two algorithms are proposed. The first combines the ideas of a two-step proximal method and iterative regularization. And the second algorithm is an adaptive version of the first with a parameter update rule that does not use the values of the Lipschitz constants of the bifunction. Theorems on strong convergence of algorithms are proved for monotone bifunctions of Lipschitz type and strongly monotone Lipschitz operators. It is shown that the proposed algorithms can be applied to monotone two-level variational inequalities in Hilbert spaces.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2021.2.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2021.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一类两层次问题:平衡问题解集上的一个变分不等式。这类问题的一个例子是寻找正常纳什均衡。为了解决这个问题,提出了两种算法。第一种方法结合了两步逼近法和迭代正则化的思想。第二个算法是第一个算法的自适应版本,它有一个参数更新规则,不使用双函数的Lipschitz常数的值。对Lipschitz型单调双函数和强单调Lipschitz算子证明了算法的强收敛性定理。结果表明,所提出的算法可以应用于Hilbert空间中的单调二阶变分不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TWO-LEVEL PROBLEMS AND TWO-STAGE PROXIMAL ALGORITHM
In this paper, a two-level problem is considered: a variational inequality on the set of solutions to the equilibrium problem. An example of such a problem is the search for the normal Nash equilibrium. To solve this problem, two algorithms are proposed. The first combines the ideas of a two-step proximal method and iterative regularization. And the second algorithm is an adaptive version of the first with a parameter update rule that does not use the values of the Lipschitz constants of the bifunction. Theorems on strong convergence of algorithms are proved for monotone bifunctions of Lipschitz type and strongly monotone Lipschitz operators. It is shown that the proposed algorithms can be applied to monotone two-level variational inequalities in Hilbert spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信