Miryan Estela Narváez, Raquel Johanna Moyano Ariasy Moyano Arias, Diego Bernardo Palacios Campana, Geovanny Augusto Izurieta Guamán
{"title":"利用Riobamba合作社商业区最近的邻居进行潜在客户预测","authors":"Miryan Estela Narváez, Raquel Johanna Moyano Ariasy Moyano Arias, Diego Bernardo Palacios Campana, Geovanny Augusto Izurieta Guamán","doi":"10.47187/perspectivas.vol4iss1.pp28-33.2022","DOIUrl":null,"url":null,"abstract":"K vecino más cercano (KNN) es uno de los algoritmos que permite el diagnóstico en tiempo real y apoya la toma de decisiones. Para esta investigación, se consideró la base de datos del área de negocio de la Cooperativa de Ahorro y Crédito Riobamba Ltda., un banco de datos que almacena una gran cantidad de información de los clientes. Estos datos se utilizaron para seleccionar información relevante manteniendo y respetando la confidencialidad de los clientes. El objetivo principal del proyecto es predecir clientes potenciales aplicando el algoritmo KNN. Los resultados demuestran que el algoritmo KNN es adecuado para predecir clientes potenciales de acuerdo a sus antecedentes demográficos, económicos y factores internos de la Cooperativa Riobamba Ltda., Resultando esto, un recurso útil para la institución en la toma de decisiones sobre futuras ofertas de crédito. Se destaca la importancia de aprovechar la información que se maneja en cada institución y más si es dentro del sector financiero porque tanto los clientes como la institución se benefician. Lo primero porque tendrían más opciones de crédito y las instituciones financieras porque podrían incrementar su cartera de clientes y mejorar su servicio.","PeriodicalId":33965,"journal":{"name":"Revista Perspectivas em Psicologia","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicción de clientes potenciales utilizando K vecino más cercano en el área de negocios de la Cooperativa Riobamba\",\"authors\":\"Miryan Estela Narváez, Raquel Johanna Moyano Ariasy Moyano Arias, Diego Bernardo Palacios Campana, Geovanny Augusto Izurieta Guamán\",\"doi\":\"10.47187/perspectivas.vol4iss1.pp28-33.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K vecino más cercano (KNN) es uno de los algoritmos que permite el diagnóstico en tiempo real y apoya la toma de decisiones. Para esta investigación, se consideró la base de datos del área de negocio de la Cooperativa de Ahorro y Crédito Riobamba Ltda., un banco de datos que almacena una gran cantidad de información de los clientes. Estos datos se utilizaron para seleccionar información relevante manteniendo y respetando la confidencialidad de los clientes. El objetivo principal del proyecto es predecir clientes potenciales aplicando el algoritmo KNN. Los resultados demuestran que el algoritmo KNN es adecuado para predecir clientes potenciales de acuerdo a sus antecedentes demográficos, económicos y factores internos de la Cooperativa Riobamba Ltda., Resultando esto, un recurso útil para la institución en la toma de decisiones sobre futuras ofertas de crédito. Se destaca la importancia de aprovechar la información que se maneja en cada institución y más si es dentro del sector financiero porque tanto los clientes como la institución se benefician. Lo primero porque tendrían más opciones de crédito y las instituciones financieras porque podrían incrementar su cartera de clientes y mejorar su servicio.\",\"PeriodicalId\":33965,\"journal\":{\"name\":\"Revista Perspectivas em Psicologia\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Perspectivas em Psicologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47187/perspectivas.vol4iss1.pp28-33.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Perspectivas em Psicologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47187/perspectivas.vol4iss1.pp28-33.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicción de clientes potenciales utilizando K vecino más cercano en el área de negocios de la Cooperativa Riobamba
K vecino más cercano (KNN) es uno de los algoritmos que permite el diagnóstico en tiempo real y apoya la toma de decisiones. Para esta investigación, se consideró la base de datos del área de negocio de la Cooperativa de Ahorro y Crédito Riobamba Ltda., un banco de datos que almacena una gran cantidad de información de los clientes. Estos datos se utilizaron para seleccionar información relevante manteniendo y respetando la confidencialidad de los clientes. El objetivo principal del proyecto es predecir clientes potenciales aplicando el algoritmo KNN. Los resultados demuestran que el algoritmo KNN es adecuado para predecir clientes potenciales de acuerdo a sus antecedentes demográficos, económicos y factores internos de la Cooperativa Riobamba Ltda., Resultando esto, un recurso útil para la institución en la toma de decisiones sobre futuras ofertas de crédito. Se destaca la importancia de aprovechar la información que se maneja en cada institución y más si es dentro del sector financiero porque tanto los clientes como la institución se benefician. Lo primero porque tendrían más opciones de crédito y las instituciones financieras porque podrían incrementar su cartera de clientes y mejorar su servicio.