{"title":"基于深度学习模型评价的网络思政课教学设计","authors":"Lijun Qiao","doi":"10.1155/2022/4754972","DOIUrl":null,"url":null,"abstract":"In practical terms, teachers are supported to use more straightforward teaching methods, such as creating real-life contextual problems, to help students develop deep learning skills. In this paper, using Bayesian theory and Bayesian classifier research methods, a machine learning model was constructed using Python to establish the correspondence between online teaching of civics and high-level semantic features and to achieve computer learning through text and teaching design evaluation research that can identify high-frequency knowledge points. The inter-relationship model knowledge mapping, the accuracy is 90%, and the continuous knowledge update help to improve the model accuracy.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"18 1","pages":"4754972:1-4754972:8"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Teaching Design of Online Ideological and Political Course Based on Deep Learning Model Evaluation\",\"authors\":\"Lijun Qiao\",\"doi\":\"10.1155/2022/4754972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical terms, teachers are supported to use more straightforward teaching methods, such as creating real-life contextual problems, to help students develop deep learning skills. In this paper, using Bayesian theory and Bayesian classifier research methods, a machine learning model was constructed using Python to establish the correspondence between online teaching of civics and high-level semantic features and to achieve computer learning through text and teaching design evaluation research that can identify high-frequency knowledge points. The inter-relationship model knowledge mapping, the accuracy is 90%, and the continuous knowledge update help to improve the model accuracy.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"18 1\",\"pages\":\"4754972:1-4754972:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4754972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4754972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Teaching Design of Online Ideological and Political Course Based on Deep Learning Model Evaluation
In practical terms, teachers are supported to use more straightforward teaching methods, such as creating real-life contextual problems, to help students develop deep learning skills. In this paper, using Bayesian theory and Bayesian classifier research methods, a machine learning model was constructed using Python to establish the correspondence between online teaching of civics and high-level semantic features and to achieve computer learning through text and teaching design evaluation research that can identify high-frequency knowledge points. The inter-relationship model knowledge mapping, the accuracy is 90%, and the continuous knowledge update help to improve the model accuracy.