{"title":"非齐次高斯自回归过程的几何递归","authors":"Olga Moskanova","doi":"10.17721/1812-5409.2023/1.14","DOIUrl":null,"url":null,"abstract":"In this paper we study Gaussian autoregression model of the form X_{n+1} = α_{n+1} X_n + W_{n+1}. It has time-inhomogeneous centered normal increments W_n and control ratios α_n. We obtained upper bounds for expectation of exponential return time to the compact [−c; c] and for expectation of the function of compressing ratios and the mentioned moment.","PeriodicalId":33822,"journal":{"name":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric recurrence of inhomogeneous Gaussian autoregression process\",\"authors\":\"Olga Moskanova\",\"doi\":\"10.17721/1812-5409.2023/1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study Gaussian autoregression model of the form X_{n+1} = α_{n+1} X_n + W_{n+1}. It has time-inhomogeneous centered normal increments W_n and control ratios α_n. We obtained upper bounds for expectation of exponential return time to the compact [−c; c] and for expectation of the function of compressing ratios and the mentioned moment.\",\"PeriodicalId\":33822,\"journal\":{\"name\":\"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/1812-5409.2023/1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1812-5409.2023/1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric recurrence of inhomogeneous Gaussian autoregression process
In this paper we study Gaussian autoregression model of the form X_{n+1} = α_{n+1} X_n + W_{n+1}. It has time-inhomogeneous centered normal increments W_n and control ratios α_n. We obtained upper bounds for expectation of exponential return time to the compact [−c; c] and for expectation of the function of compressing ratios and the mentioned moment.