算法1014

C. F. Borges
{"title":"算法1014","authors":"C. F. Borges","doi":"10.1145/3428446","DOIUrl":null,"url":null,"abstract":"We develop fast and accurate algorithms for evaluating √x2+y2 for two floating-point numbers x and y. Library functions that perform this computation are generally named hypot(x,y). We compare five approaches that we will develop in this article to the current resident library function that is delivered with Julia 1.1 and to the code that has been distributed with the C math library for decades. We will investigate the accuracy of our algorithms by simulation.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"111 1","pages":"1 - 12"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm 1014\",\"authors\":\"C. F. Borges\",\"doi\":\"10.1145/3428446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop fast and accurate algorithms for evaluating √x2+y2 for two floating-point numbers x and y. Library functions that perform this computation are generally named hypot(x,y). We compare five approaches that we will develop in this article to the current resident library function that is delivered with Julia 1.1 and to the code that has been distributed with the C math library for decades. We will investigate the accuracy of our algorithms by simulation.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"111 1\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3428446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了快速准确的算法来计算两个浮点数x和y的√x2+y2。执行此计算的库函数通常称为hypot(x,y)。我们将在本文中开发的五种方法与Julia 1.1中提供的当前常驻库函数以及与C数学库一起发布了几十年的代码进行比较。我们将通过模拟来研究我们算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm 1014
We develop fast and accurate algorithms for evaluating √x2+y2 for two floating-point numbers x and y. Library functions that perform this computation are generally named hypot(x,y). We compare five approaches that we will develop in this article to the current resident library function that is delivered with Julia 1.1 and to the code that has been distributed with the C math library for decades. We will investigate the accuracy of our algorithms by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信