Ising-FPGA

Ankit Mondal, Ankur Srivastava
{"title":"Ising-FPGA","authors":"Ankit Mondal, Ankur Srivastava","doi":"10.1145/3411511","DOIUrl":null,"url":null,"abstract":"The Ising model has been explored as a framework for modeling NP-hard problems, with several diverse systems proposed to solve it. The Magnetic Tunnel Junction– (MTJ) based Magnetic RAM is capable of replacing CMOS in memory chips. In this article, we propose the use of MTJs for representing the units of an Ising model and leveraging its intrinsic physics for finding the ground state of the system through annealing. We design the structure of a basic MTJ-based Ising cell capable of performing the functions essential to an Ising solver. The hardware overhead of the Ising model is analyzed, and a technique to use the basic Ising cell for scaling to large problems is described. We then go on to propose Ising-FPGA, a parallel and reconfigurable architecture that can be used to map a large class of NP-hard problems, and show how a standard Place and Route tool can be utilized to program the Ising-FPGA. The effects of this hardware platform on our proposed design are characterized and methods to overcome these effects are prescribed. We discuss how three representative NP-hard problems can be mapped to the Ising model. Further, we suggest ways to simplify these problems to reduce the use of hardware and analyze the impact of these simplifications on the quality of solutions. Simulation results show the effectiveness of MTJs as Ising units by producing solutions close/comparable to the optimum and demonstrate that our design methodology holds the capability to account for the effects of the hardware.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"91 1","pages":"1 - 27"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ising-FPGA\",\"authors\":\"Ankit Mondal, Ankur Srivastava\",\"doi\":\"10.1145/3411511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ising model has been explored as a framework for modeling NP-hard problems, with several diverse systems proposed to solve it. The Magnetic Tunnel Junction– (MTJ) based Magnetic RAM is capable of replacing CMOS in memory chips. In this article, we propose the use of MTJs for representing the units of an Ising model and leveraging its intrinsic physics for finding the ground state of the system through annealing. We design the structure of a basic MTJ-based Ising cell capable of performing the functions essential to an Ising solver. The hardware overhead of the Ising model is analyzed, and a technique to use the basic Ising cell for scaling to large problems is described. We then go on to propose Ising-FPGA, a parallel and reconfigurable architecture that can be used to map a large class of NP-hard problems, and show how a standard Place and Route tool can be utilized to program the Ising-FPGA. The effects of this hardware platform on our proposed design are characterized and methods to overcome these effects are prescribed. We discuss how three representative NP-hard problems can be mapped to the Ising model. Further, we suggest ways to simplify these problems to reduce the use of hardware and analyze the impact of these simplifications on the quality of solutions. Simulation results show the effectiveness of MTJs as Ising units by producing solutions close/comparable to the optimum and demonstrate that our design methodology holds the capability to account for the effects of the hardware.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"91 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

伊辛模型作为np困难问题建模的框架已被探索,并提出了几个不同的系统来解决它。基于磁隧道结(MTJ)的磁性RAM能够取代存储芯片中的CMOS。在本文中,我们建议使用mtj来表示Ising模型的单元,并利用其内在物理特性通过退火来寻找系统的基态。我们设计了一个基本的基于mtj的Ising单元的结构,能够执行Ising求解器的基本功能。分析了Ising模型的硬件开销,并描述了一种使用基本Ising单元扩展到大型问题的技术。然后,我们继续提出Ising-FPGA,这是一种并行和可重构的架构,可用于映射大类NP-hard问题,并展示了如何使用标准的Place和Route工具对Ising-FPGA进行编程。分析了该硬件平台对本设计的影响,并提出了克服这些影响的方法。我们讨论了如何将三个有代表性的np困难问题映射到Ising模型。此外,我们提出了简化这些问题以减少硬件使用的方法,并分析了这些简化对解决方案质量的影响。仿真结果显示mtj作为Ising单元的有效性,通过产生接近/可与最佳解决方案相媲美的解决方案,并证明我们的设计方法具有考虑硬件影响的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ising-FPGA
The Ising model has been explored as a framework for modeling NP-hard problems, with several diverse systems proposed to solve it. The Magnetic Tunnel Junction– (MTJ) based Magnetic RAM is capable of replacing CMOS in memory chips. In this article, we propose the use of MTJs for representing the units of an Ising model and leveraging its intrinsic physics for finding the ground state of the system through annealing. We design the structure of a basic MTJ-based Ising cell capable of performing the functions essential to an Ising solver. The hardware overhead of the Ising model is analyzed, and a technique to use the basic Ising cell for scaling to large problems is described. We then go on to propose Ising-FPGA, a parallel and reconfigurable architecture that can be used to map a large class of NP-hard problems, and show how a standard Place and Route tool can be utilized to program the Ising-FPGA. The effects of this hardware platform on our proposed design are characterized and methods to overcome these effects are prescribed. We discuss how three representative NP-hard problems can be mapped to the Ising model. Further, we suggest ways to simplify these problems to reduce the use of hardware and analyze the impact of these simplifications on the quality of solutions. Simulation results show the effectiveness of MTJs as Ising units by producing solutions close/comparable to the optimum and demonstrate that our design methodology holds the capability to account for the effects of the hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信