一维亥姆霍兹方程的格林函数:傅里叶正弦级数的封闭解

Q4 Social Sciences
A. Castro
{"title":"一维亥姆霍兹方程的格林函数:傅里叶正弦级数的封闭解","authors":"A. Castro","doi":"10.1590/1806-9126-RBEF-2021-0068","DOIUrl":null,"url":null,"abstract":"It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous onedimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑∞ k=1 sin kx sin ky/(k 2 − α2) is found in the process.","PeriodicalId":49620,"journal":{"name":"Revista Brasileira De Ensino De Fisica","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series\",\"authors\":\"A. Castro\",\"doi\":\"10.1590/1806-9126-RBEF-2021-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous onedimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑∞ k=1 sin kx sin ky/(k 2 − α2) is found in the process.\",\"PeriodicalId\":49620,\"journal\":{\"name\":\"Revista Brasileira De Ensino De Fisica\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira De Ensino De Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1806-9126-RBEF-2021-0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira De Ensino De Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1806-9126-RBEF-2021-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

给出了一种由傅里叶正弦级数表示得到具有齐次狄利克雷条件的非齐次一维亥姆霍兹方程格林函数的封闭形式的方法。在此过程中找到了级数∑∞k=1 sin kx sin ky/(k 2−α2)的和的封闭形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series
It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous onedimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑∞ k=1 sin kx sin ky/(k 2 − α2) is found in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
102
审稿时长
6-12 weeks
期刊介绍: The Revista Brasileira de Ensino de Física - RBEF - is an open-access journal of the Brazilian Physical Society (SBF) devoted to the improvement of Physics teaching at all academic levels. Through the publication of peer-reviewed, high-quality papers, we aim at promoting Physics and correlated sciences, thus contributing to the scientific education of society. The RBEF accepts papers on theoretical and experimental aspects of Physics, materials and methodology, history and philosophy of sciences, education policies and themes relevant to the physics-teaching and research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信