基于界面跟踪法的浅池液体射流行为数值模拟

Takayuki Suzuki, H. Yoshida, Naoki Horiguchi, Sota Yamamura, Y. Abe
{"title":"基于界面跟踪法的浅池液体射流行为数值模拟","authors":"Takayuki Suzuki, H. Yoshida, Naoki Horiguchi, Sota Yamamura, Y. Abe","doi":"10.1115/icone2020-16213","DOIUrl":null,"url":null,"abstract":"\n In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials.\n In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Simulation of Liquid Jet Behavior in Shallow Pool by Interface Tracking Method\",\"authors\":\"Takayuki Suzuki, H. Yoshida, Naoki Horiguchi, Sota Yamamura, Y. Abe\",\"doi\":\"10.1115/icone2020-16213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials.\\n In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.\",\"PeriodicalId\":63646,\"journal\":{\"name\":\"核工程研究与设计\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核工程研究与设计\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在核反应堆的严重事故(SA)中,燃料和部件熔化,熔化的材料落在反应堆容器的下部。在反应堆容器的下部,在sa的某些部分,人们认为有一个水池。然后,熔化的堆芯材料以射流的形式落入下充气室内的水池中。熔融材料射流破裂,熔融材料和冷却剂之间可能发生热传递。这个过程被称为燃料-冷却剂相互作用(FCI)。FCI是考虑堆芯材料冷却性和分布的重要现象之一。本文采用所开发的TPFIT方法对浅池射流破碎现象进行了数值模拟。我们试图了解各种流体动力作用下,如渗透、到达底部、扩散、堆积的熔融物质射流。此外,我们还评估了详细的射流扩散行为,并检查了晶格分辨率和接触角的影响。此外,利用数值模拟数据对雾化液滴的直径进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Liquid Jet Behavior in Shallow Pool by Interface Tracking Method
In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials. In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
922
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信