{"title":"的渐近求值 $\\int_0^\\infty\\left(\\frac{\\sin x}{x}\\right)^n\\;dx$","authors":"J. Schlage-Puchta","doi":"10.4134/CKMS.c200133","DOIUrl":null,"url":null,"abstract":"We consider the integral $\\int_0^\\infty\\left(\\frac{\\sin x}{x}\\right)^n\\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic evaluation of $\\\\int_0^\\\\infty\\\\left(\\\\frac{\\\\sin x}{x}\\\\right)^n\\\\;dx$\",\"authors\":\"J. Schlage-Puchta\",\"doi\":\"10.4134/CKMS.c200133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the integral $\\\\int_0^\\\\infty\\\\left(\\\\frac{\\\\sin x}{x}\\\\right)^n\\\\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\\\\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4134/CKMS.c200133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.c200133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic evaluation of $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$
We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.