特殊伪黎曼空间中的广义φ(Ric)-向量场

Q3 Mathematics
N. Vashpanova, A. Savchenko, N. Vasylieva
{"title":"特殊伪黎曼空间中的广义φ(Ric)-向量场","authors":"N. Vashpanova, A. Savchenko, N. Vasylieva","doi":"10.15673/tmgc.v14i4.2155","DOIUrl":null,"url":null,"abstract":"The paper treats pseudo-Riemannian spaces permitting generalized φ(Ric)-vector fields. We study conditions for the existence of such vector fields in conformally flat, equidistant, reducible and Kählerian pseudo-Riemannian spaces. The obtained results can be applied for the construction of generalized φ(Ric)-vector fields that differ from φ(Ric)-vector fields. The research is carried out locally without limitations imposed on a sign of metric tensor.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized φ(Ric)-vector fields in special pseudo-Riemannian spaces\",\"authors\":\"N. Vashpanova, A. Savchenko, N. Vasylieva\",\"doi\":\"10.15673/tmgc.v14i4.2155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper treats pseudo-Riemannian spaces permitting generalized φ(Ric)-vector fields. We study conditions for the existence of such vector fields in conformally flat, equidistant, reducible and Kählerian pseudo-Riemannian spaces. The obtained results can be applied for the construction of generalized φ(Ric)-vector fields that differ from φ(Ric)-vector fields. The research is carried out locally without limitations imposed on a sign of metric tensor.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v14i4.2155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v14i4.2155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了允许广义φ(Ric)-向量场的伪黎曼空间。研究了共形平坦、等距、可约和Kählerian伪黎曼空间中这些向量场存在的条件。所得结果可用于构造不同于φ(Ric)-向量场的广义φ(Ric)-向量场。该研究是局部进行的,不受度量张量符号的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized φ(Ric)-vector fields in special pseudo-Riemannian spaces
The paper treats pseudo-Riemannian spaces permitting generalized φ(Ric)-vector fields. We study conditions for the existence of such vector fields in conformally flat, equidistant, reducible and Kählerian pseudo-Riemannian spaces. The obtained results can be applied for the construction of generalized φ(Ric)-vector fields that differ from φ(Ric)-vector fields. The research is carried out locally without limitations imposed on a sign of metric tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信