海洋生态系统研究中目标强度识别的非负强度

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS
Daipei Liu, S. Marburg, N. Kessissoglou
{"title":"海洋生态系统研究中目标强度识别的非负强度","authors":"Daipei Liu, S. Marburg, N. Kessissoglou","doi":"10.1142/s2591728521500237","DOIUrl":null,"url":null,"abstract":"In this paper, we propose non-negative intensity (NNI) as an alternative intensity-based technique for target strength identification in marine ecosystem research. NNI identifies local surface regions of a body with positive-only sound power contributions. NNI is employed for sound scattering by fluid-loaded, fluid-filled elastic structures with weak scattering boundary conditions. Three numerical case studies are presented for which fully coupled fluid-structure interaction models based on the finite element method (FEM) and the boundary element method (BEM) are developed. To validate the three-way coupling between the structural and fluid domains, an elastic shell submerged in water and filled with different internal fluids is initially considered. Results for the scattered acoustic intensity obtained numerically are compared with analytical results from the literature. Models representing Antarctic krill of simple and complex geometry are developed. A 3×3 cylinder array representing a simplified aggregation of krill is also presented. Target strength is calculated using both the scattered intensity and NNI for different incident excitation angles. Results for NNI identify the surface regions of an individual organism or group of organisms with the greatest contribution to the scattered sound at the target strength locations.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"79 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-negative Intensity for Target Strength Identification in Marine Ecosystem Research\",\"authors\":\"Daipei Liu, S. Marburg, N. Kessissoglou\",\"doi\":\"10.1142/s2591728521500237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose non-negative intensity (NNI) as an alternative intensity-based technique for target strength identification in marine ecosystem research. NNI identifies local surface regions of a body with positive-only sound power contributions. NNI is employed for sound scattering by fluid-loaded, fluid-filled elastic structures with weak scattering boundary conditions. Three numerical case studies are presented for which fully coupled fluid-structure interaction models based on the finite element method (FEM) and the boundary element method (BEM) are developed. To validate the three-way coupling between the structural and fluid domains, an elastic shell submerged in water and filled with different internal fluids is initially considered. Results for the scattered acoustic intensity obtained numerically are compared with analytical results from the literature. Models representing Antarctic krill of simple and complex geometry are developed. A 3×3 cylinder array representing a simplified aggregation of krill is also presented. Target strength is calculated using both the scattered intensity and NNI for different incident excitation angles. Results for NNI identify the surface regions of an individual organism or group of organisms with the greatest contribution to the scattered sound at the target strength locations.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728521500237\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728521500237","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了非负强度(NNI)作为海洋生态系统研究中基于强度的目标强度识别的替代技术。NNI识别具有纯正声功率贡献的物体局部表面区域。在弱散射边界条件下,将NNI用于加载、充液弹性结构的声散射。给出了基于有限元法和边界元法的全耦合流固耦合模型的三个数值算例。为了验证结构域和流体域之间的三向耦合,首先考虑了一个浸入水中并充满不同内部流体的弹性壳。数值计算的散射声强与文献分析结果进行了比较。建立了代表南极磷虾的简单和复杂几何模型。一个3×3圆柱阵列表示一个简化的磷虾聚集也提出。在不同入射激发角度下,利用散射强度和NNI计算目标强度。NNI的结果确定了在目标强度位置对散射声贡献最大的单个生物或生物群的表面区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-negative Intensity for Target Strength Identification in Marine Ecosystem Research
In this paper, we propose non-negative intensity (NNI) as an alternative intensity-based technique for target strength identification in marine ecosystem research. NNI identifies local surface regions of a body with positive-only sound power contributions. NNI is employed for sound scattering by fluid-loaded, fluid-filled elastic structures with weak scattering boundary conditions. Three numerical case studies are presented for which fully coupled fluid-structure interaction models based on the finite element method (FEM) and the boundary element method (BEM) are developed. To validate the three-way coupling between the structural and fluid domains, an elastic shell submerged in water and filled with different internal fluids is initially considered. Results for the scattered acoustic intensity obtained numerically are compared with analytical results from the literature. Models representing Antarctic krill of simple and complex geometry are developed. A 3×3 cylinder array representing a simplified aggregation of krill is also presented. Target strength is calculated using both the scattered intensity and NNI for different incident excitation angles. Results for NNI identify the surface regions of an individual organism or group of organisms with the greatest contribution to the scattered sound at the target strength locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信