具有接触奇点的闭辛流形中Fomenko-Zieschang不变量的实现

IF 0.8 4区 数学 Q2 MATHEMATICS
Sbornik Mathematics Pub Date : 2022-01-01 DOI:10.1070/SM9579
D. B. Zot’ev, V. I. Sidel'nikov
{"title":"具有接触奇点的闭辛流形中Fomenko-Zieschang不变量的实现","authors":"D. B. Zot’ev, V. I. Sidel'nikov","doi":"10.1070/SM9579","DOIUrl":null,"url":null,"abstract":"The topological bifurcations of Liouville foliations on invariant -manifolds that are induced by attaching toric -handles are investigated. It is shown that each marked molecule (Fomenko-Zieschang invariant) can be realized on an invariant submanifold of a closed symplectic manifold with contact singularities which is obtained by attaching toric -handles sequentially to a set of symplectic manifolds, while these latter have the structures of locally trivial fibrations over associated with atoms. Bibliography: 10 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"23 1","pages":"443 - 465"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities\",\"authors\":\"D. B. Zot’ev, V. I. Sidel'nikov\",\"doi\":\"10.1070/SM9579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topological bifurcations of Liouville foliations on invariant -manifolds that are induced by attaching toric -handles are investigated. It is shown that each marked molecule (Fomenko-Zieschang invariant) can be realized on an invariant submanifold of a closed symplectic manifold with contact singularities which is obtained by attaching toric -handles sequentially to a set of symplectic manifolds, while these latter have the structures of locally trivial fibrations over associated with atoms. Bibliography: 10 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"23 1\",\"pages\":\"443 - 465\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9579\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9579","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了由附加环柄引起的不变流形上的Liouville叶的拓扑分岔。证明了每个标记分子(Fomenko-Zieschang不变量)都可以在具有接触奇点的闭辛流形的不变量子流形上实现,该子流形是通过将环柄依次附加到一组辛流形上而得到的,而这些辛流形具有与原子相关的局部平凡颤振结构。参考书目:10篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of Fomenko-Zieschang invariants in closed symplectic manifolds with contact singularities
The topological bifurcations of Liouville foliations on invariant -manifolds that are induced by attaching toric -handles are investigated. It is shown that each marked molecule (Fomenko-Zieschang invariant) can be realized on an invariant submanifold of a closed symplectic manifold with contact singularities which is obtained by attaching toric -handles sequentially to a set of symplectic manifolds, while these latter have the structures of locally trivial fibrations over associated with atoms. Bibliography: 10 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sbornik Mathematics
Sbornik Mathematics 数学-数学
CiteScore
1.40
自引率
12.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in: Mathematical analysis Ordinary differential equations Partial differential equations Mathematical physics Geometry Algebra Functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信