自相似片段消光时间的尾部渐近性

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Bénédicte Haas
{"title":"自相似片段消光时间的尾部渐近性","authors":"Bénédicte Haas","doi":"10.1214/22-aihp1306","DOIUrl":null,"url":null,"abstract":"We provide the exact large-time behavior of the tail distribution of the extinction time of a self-similar fragmentation process with a negative index of self-similarity, improving thus a previous result on the logarithmic asymptotic behavior of this tail. Two factors influence this behavior: the distribution of the largest fragment at the time of a dislocation and the index of self-similarity. As an application we obtain the asymptotic behavior of all moments of the largest fragment and compare it to the behavior of the moments of a tagged fragment, whose decrease is in general significantly slower. We illustrate our results on several examples, including fragmentations related to random real trees - for which we thus obtain the large-time behavior of the tail distribution of the height - such as the stable L\\'evy trees of Duquesne, Le Gall and Le Jan (including the Brownian tree of Aldous), the alpha-model of Ford and the beta-splitting model of Aldous.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tail asymptotics for extinction times of self-similar fragmentations\",\"authors\":\"Bénédicte Haas\",\"doi\":\"10.1214/22-aihp1306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide the exact large-time behavior of the tail distribution of the extinction time of a self-similar fragmentation process with a negative index of self-similarity, improving thus a previous result on the logarithmic asymptotic behavior of this tail. Two factors influence this behavior: the distribution of the largest fragment at the time of a dislocation and the index of self-similarity. As an application we obtain the asymptotic behavior of all moments of the largest fragment and compare it to the behavior of the moments of a tagged fragment, whose decrease is in general significantly slower. We illustrate our results on several examples, including fragmentations related to random real trees - for which we thus obtain the large-time behavior of the tail distribution of the height - such as the stable L\\\\'evy trees of Duquesne, Le Gall and Le Jan (including the Brownian tree of Aldous), the alpha-model of Ford and the beta-splitting model of Aldous.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 4

摘要

我们提供了具有负自相似指数的自相似破碎过程消光时间尾部分布的精确大时间行为,从而改进了先前关于该尾部的对数渐近行为的结果。影响这种行为的因素有两个:位错发生时最大碎片的分布和自相似指数。作为一种应用,我们得到了最大片段的所有矩的渐近行为,并将其与标记片段的矩的行为进行比较,标记片段的矩的减少通常要慢得多。我们用几个例子来说明我们的结果,包括与随机真实树相关的碎片-因此我们获得了高度尾部分布的大时间行为-例如Duquesne, Le Gall和Le Jan的稳定L\'evy树(包括Aldous的布朗树),Ford的α模型和Aldous的β分裂模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail asymptotics for extinction times of self-similar fragmentations
We provide the exact large-time behavior of the tail distribution of the extinction time of a self-similar fragmentation process with a negative index of self-similarity, improving thus a previous result on the logarithmic asymptotic behavior of this tail. Two factors influence this behavior: the distribution of the largest fragment at the time of a dislocation and the index of self-similarity. As an application we obtain the asymptotic behavior of all moments of the largest fragment and compare it to the behavior of the moments of a tagged fragment, whose decrease is in general significantly slower. We illustrate our results on several examples, including fragmentations related to random real trees - for which we thus obtain the large-time behavior of the tail distribution of the height - such as the stable L\'evy trees of Duquesne, Le Gall and Le Jan (including the Brownian tree of Aldous), the alpha-model of Ford and the beta-splitting model of Aldous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信