增广是勒让图的束

IF 0.6 3区 数学 Q3 MATHEMATICS
B. An, Youngjin Bae, Tao Su
{"title":"增广是勒让图的束","authors":"B. An, Youngjin Bae, Tao Su","doi":"10.4310/jsg.2022.v20.n2.a1","DOIUrl":null,"url":null,"abstract":"In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove \"augmentations are sheaves\" in the singular case.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"59 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Augmentations are sheaves for Legendrian graphs\",\"authors\":\"B. An, Youngjin Bae, Tao Su\",\"doi\":\"10.4310/jsg.2022.v20.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\\\\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove \\\"augmentations are sheaves\\\" in the singular case.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

本文结合(有边)Legendrian图,研究并证明了两个范畴Legendrian不变量之间的等价性:增强范畴,一个提升相关Chekanov-Eliashberg DGA的增广集合的一元$A_{\infty}$ -范畴,和一个在前平面上具有微支撑的DG范畴,在接触无穷远处由(有边)Legendrian图控制。换句话说,推广[21],我们证明了在奇异情况下“增广是束”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmentations are sheaves for Legendrian graphs
In this article, associated to a (bordered) Legendrian graph, we study and show the equivalence between two categorical Legendrian isotopy invariants: the augmentation category, a unital $A_{\infty}$-category, which lifts the set of augmentations of the associated Chekanov-Eliashberg DGA, and a DG category of constructible sheaves on the front plane, with micro-support at contact infinity controlled by the (bordered) Legendrian graph. In other words, generalizing [21], we prove "augmentations are sheaves" in the singular case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信