{"title":"基于模型的智能配水网络攻击检测方案","authors":"Chuadhry Mujeeb Ahmed, C. Murguia, Justin Ruths","doi":"10.1145/3052973.3053011","DOIUrl":null,"url":null,"abstract":"In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Model-based Attack Detection Scheme for Smart Water Distribution Networks\",\"authors\":\"Chuadhry Mujeeb Ahmed, C. Murguia, Justin Ruths\",\"doi\":\"10.1145/3052973.3053011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.\",\"PeriodicalId\":20540,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3052973.3053011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3053011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based Attack Detection Scheme for Smart Water Distribution Networks
In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.