围场火灾和烟雾动力学的计算机建模:帮助还是负担?

B. Merci
{"title":"围场火灾和烟雾动力学的计算机建模:帮助还是负担?","authors":"B. Merci","doi":"10.3801/iafss.fss.11-46","DOIUrl":null,"url":null,"abstract":"Fire simulations are of unique value in different respects: for fire safety system design calculations, for improving our understanding (theory and model development and validation) and for fire forecasting. In this paper the effective use of computing power for the further development of fire safety science is discussed, considering only gas phase phenomena in fire and smoke dynamics in enclosures. Arguably, much effort needs to be devoted to multi-phase phenomena (pyrolysis modeling, the effect of water or other suppressants, etc.), but this is not discussed in the paper at hand. A common feature to all types of simulations is that the Required Computing Resources (RCR), determined by the envisaged accuracy and the complexity of the problem to be tackled, must be less than the Available Computing Resources (ACR). Accuracy, reliability and dimensionality of the models used, must therefore be related to the problem tackled. In order to make progress, bench-marking studies, as a joint effort made by modelers and experimentalists, with transparent communication, are argued to be a good approach for systematic progress in the development of, and confidence in, models. Using Computational Fluid Dynamics (CFD) can be very valuable for the development of theory and the study of detailed fluid mechanics phenomena, but several aspects are important to guarantee the quality of the results. Some ideas will be formulated on how to investigate requirements on the computational mesh. Turbulence - chemistry interaction (TCI) and turbulence - radiation interaction (TRI) are also discussed briefly. Yet, it is argued that a major source of uncertainty in computer simulations stems from (and will continue to stem from) the characterization of the ever changing and developing materials (i.e. the fuel), as well as from geometry dependent features (including ventilation and heat transfer). This affects the combustion and soot formation, and therefore the fire and smoke dynamics. Therefore, a user-defined fire will remain indispensible in the foreseeable future when using computer modeling for the sake of design of fire safety systems. Once this fire has been defined, CFD is best suited in regions where detail is required or complex flow patterns establish, while other forms of modeling can be considered in other regions. For real-time and forecasting applications, it is argued that sensor-assisted numerical simulations are very promising and their use is expected to become widespread in the coming decades. With increasing computing power, the use of CFD will become more feasible in this context, but for the time being zone model calculations (perhaps combined with CFD in regions where more detail is required) seem better suited to that purpose.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"5 1","pages":"46-65"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Computer Modeling for Fire and Smoke Dynamics in Enclosures: A Help or a Burden?\",\"authors\":\"B. Merci\",\"doi\":\"10.3801/iafss.fss.11-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire simulations are of unique value in different respects: for fire safety system design calculations, for improving our understanding (theory and model development and validation) and for fire forecasting. In this paper the effective use of computing power for the further development of fire safety science is discussed, considering only gas phase phenomena in fire and smoke dynamics in enclosures. Arguably, much effort needs to be devoted to multi-phase phenomena (pyrolysis modeling, the effect of water or other suppressants, etc.), but this is not discussed in the paper at hand. A common feature to all types of simulations is that the Required Computing Resources (RCR), determined by the envisaged accuracy and the complexity of the problem to be tackled, must be less than the Available Computing Resources (ACR). Accuracy, reliability and dimensionality of the models used, must therefore be related to the problem tackled. In order to make progress, bench-marking studies, as a joint effort made by modelers and experimentalists, with transparent communication, are argued to be a good approach for systematic progress in the development of, and confidence in, models. Using Computational Fluid Dynamics (CFD) can be very valuable for the development of theory and the study of detailed fluid mechanics phenomena, but several aspects are important to guarantee the quality of the results. Some ideas will be formulated on how to investigate requirements on the computational mesh. Turbulence - chemistry interaction (TCI) and turbulence - radiation interaction (TRI) are also discussed briefly. Yet, it is argued that a major source of uncertainty in computer simulations stems from (and will continue to stem from) the characterization of the ever changing and developing materials (i.e. the fuel), as well as from geometry dependent features (including ventilation and heat transfer). This affects the combustion and soot formation, and therefore the fire and smoke dynamics. Therefore, a user-defined fire will remain indispensible in the foreseeable future when using computer modeling for the sake of design of fire safety systems. Once this fire has been defined, CFD is best suited in regions where detail is required or complex flow patterns establish, while other forms of modeling can be considered in other regions. For real-time and forecasting applications, it is argued that sensor-assisted numerical simulations are very promising and their use is expected to become widespread in the coming decades. With increasing computing power, the use of CFD will become more feasible in this context, but for the time being zone model calculations (perhaps combined with CFD in regions where more detail is required) seem better suited to that purpose.\",\"PeriodicalId\":12145,\"journal\":{\"name\":\"Fire Safety Science\",\"volume\":\"5 1\",\"pages\":\"46-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3801/iafss.fss.11-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

火灾模拟在不同方面具有独特的价值:用于消防安全系统设计计算,用于提高我们的理解(理论和模型的开发和验证)以及用于火灾预测。本文仅考虑火灾中的气相现象和围护结构中的烟雾动力学,讨论了如何有效地利用计算能力来进一步发展火灾安全科学。可以说,多相现象(热解模型、水或其他抑制剂的影响等)需要投入更多的精力,但这在本文中没有讨论。所有类型的模拟的一个共同特点是,所需的计算资源(RCR),由设想的精度和要解决的问题的复杂性决定,必须小于可用的计算资源(ACR)。因此,所使用模型的准确性、可靠性和维度必须与所处理的问题相联系。为了取得进展,基准研究作为建模者和实验家的共同努力,通过透明的沟通,被认为是在模型开发和信任方面取得系统进展的好方法。计算流体动力学(CFD)对于理论的发展和流体力学现象的详细研究具有重要的价值,但要保证结果的质量,有几个方面是重要的。本文将阐述如何研究计算网格的需求。湍流-化学相互作用(TCI)和湍流-辐射相互作用(TRI)也作了简要讨论。然而,有人认为,计算机模拟中不确定性的主要来源源于(并将继续源于)不断变化和发展的材料(即燃料)的特征,以及几何相关特征(包括通风和传热)。这影响了燃烧和烟灰的形成,因此影响了火和烟的动力学。因此,在可预见的未来,在使用计算机建模进行消防安全系统设计时,用户自定义火灾仍然是必不可少的。一旦确定了这个范围,CFD最适合于需要细节或建立复杂流动模式的区域,而其他区域可以考虑其他形式的建模。对于实时和预测应用,认为传感器辅助数值模拟是非常有前途的,它们的使用有望在未来几十年得到广泛应用。随着计算能力的提高,在这种情况下使用CFD将变得更加可行,但目前区域模型计算(可能在需要更多细节的区域与CFD结合)似乎更适合于此目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer Modeling for Fire and Smoke Dynamics in Enclosures: A Help or a Burden?
Fire simulations are of unique value in different respects: for fire safety system design calculations, for improving our understanding (theory and model development and validation) and for fire forecasting. In this paper the effective use of computing power for the further development of fire safety science is discussed, considering only gas phase phenomena in fire and smoke dynamics in enclosures. Arguably, much effort needs to be devoted to multi-phase phenomena (pyrolysis modeling, the effect of water or other suppressants, etc.), but this is not discussed in the paper at hand. A common feature to all types of simulations is that the Required Computing Resources (RCR), determined by the envisaged accuracy and the complexity of the problem to be tackled, must be less than the Available Computing Resources (ACR). Accuracy, reliability and dimensionality of the models used, must therefore be related to the problem tackled. In order to make progress, bench-marking studies, as a joint effort made by modelers and experimentalists, with transparent communication, are argued to be a good approach for systematic progress in the development of, and confidence in, models. Using Computational Fluid Dynamics (CFD) can be very valuable for the development of theory and the study of detailed fluid mechanics phenomena, but several aspects are important to guarantee the quality of the results. Some ideas will be formulated on how to investigate requirements on the computational mesh. Turbulence - chemistry interaction (TCI) and turbulence - radiation interaction (TRI) are also discussed briefly. Yet, it is argued that a major source of uncertainty in computer simulations stems from (and will continue to stem from) the characterization of the ever changing and developing materials (i.e. the fuel), as well as from geometry dependent features (including ventilation and heat transfer). This affects the combustion and soot formation, and therefore the fire and smoke dynamics. Therefore, a user-defined fire will remain indispensible in the foreseeable future when using computer modeling for the sake of design of fire safety systems. Once this fire has been defined, CFD is best suited in regions where detail is required or complex flow patterns establish, while other forms of modeling can be considered in other regions. For real-time and forecasting applications, it is argued that sensor-assisted numerical simulations are very promising and their use is expected to become widespread in the coming decades. With increasing computing power, the use of CFD will become more feasible in this context, but for the time being zone model calculations (perhaps combined with CFD in regions where more detail is required) seem better suited to that purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信