平均约翰定理

IF 2 1区 数学
A. Naor
{"title":"平均约翰定理","authors":"A. Naor","doi":"10.2140/gt.2021.25.1631","DOIUrl":null,"url":null,"abstract":"We prove that the $\\frac12$-snowflake of a finite-dimensional normed space $(X,\\|\\cdot\\|_X)$ embeds into a Hilbert space with quadratic average distortion $$O\\Big(\\sqrt{\\log \\mathrm{dim}(X)}\\Big).$$ We deduce from this (optimal) statement that if an $n$-vertex expander embeds with average distortion $D\\geqslant 1$ into $(X,\\|\\cdot\\|_X)$, then necessarily $\\mathrm{dim}(X)\\geqslant n^{\\Omega(1/D)}$, which is sharp by the work of Johnson, Lindenstrauss and Schechtman (1987). This improves over the previously best-known bound $\\mathrm{dim}(X)\\gtrsim (\\log n)^2/D^2$ of Linial, London and Rabinovich (1995), strengthens a theorem of Matou\\v{s}ek (1996) which resolved questions of Johnson and Lindenstrauss (1982), Bourgain (1985) and Arias-de-Reyna and Rodr{\\'{\\i}}guez-Piazza (1992), and answers negatively a question that was posed (for algorithmic purposes) by Andoni, Nguyen, Nikolov, Razenshteyn and Waingarten (2016).","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An average John theorem\",\"authors\":\"A. Naor\",\"doi\":\"10.2140/gt.2021.25.1631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the $\\\\frac12$-snowflake of a finite-dimensional normed space $(X,\\\\|\\\\cdot\\\\|_X)$ embeds into a Hilbert space with quadratic average distortion $$O\\\\Big(\\\\sqrt{\\\\log \\\\mathrm{dim}(X)}\\\\Big).$$ We deduce from this (optimal) statement that if an $n$-vertex expander embeds with average distortion $D\\\\geqslant 1$ into $(X,\\\\|\\\\cdot\\\\|_X)$, then necessarily $\\\\mathrm{dim}(X)\\\\geqslant n^{\\\\Omega(1/D)}$, which is sharp by the work of Johnson, Lindenstrauss and Schechtman (1987). This improves over the previously best-known bound $\\\\mathrm{dim}(X)\\\\gtrsim (\\\\log n)^2/D^2$ of Linial, London and Rabinovich (1995), strengthens a theorem of Matou\\\\v{s}ek (1996) which resolved questions of Johnson and Lindenstrauss (1982), Bourgain (1985) and Arias-de-Reyna and Rodr{\\\\'{\\\\i}}guez-Piazza (1992), and answers negatively a question that was posed (for algorithmic purposes) by Andoni, Nguyen, Nikolov, Razenshteyn and Waingarten (2016).\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.1631\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.1631","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了有限维赋范空间$(X,\|\cdot\|_X)$的$\frac12$ -雪花嵌入具有二次平均畸变的希尔伯特空间$$O\Big(\sqrt{\log \mathrm{dim}(X)}\Big).$$。我们从这个(最优)陈述中推断,如果一个$n$ -顶点扩展器嵌入具有平均畸变$D\geqslant 1$的$(X,\|\cdot\|_X)$,那么必然$\mathrm{dim}(X)\geqslant n^{\Omega(1/D)}$,这是由Johnson, Lindenstrauss和Schechtman(1987)的工作所明确的。这改进了Linial, London和Rabinovich(1995)之前最著名的界$\mathrm{dim}(X)\gtrsim (\log n)^2/D^2$,加强了Matou \v{s} ek(1996)的定理,该定理解决了Johnson和Lindenstrauss (1982), Bourgain(1985)以及Arias-de-Reyna和Rodr {'{\i}} guez-Piazza(1992)的问题,并否定了Andoni, Nguyen, Nikolov, Razenshteyn和Waingarten(2016)提出的(出于算法目的)问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An average John theorem
We prove that the $\frac12$-snowflake of a finite-dimensional normed space $(X,\|\cdot\|_X)$ embeds into a Hilbert space with quadratic average distortion $$O\Big(\sqrt{\log \mathrm{dim}(X)}\Big).$$ We deduce from this (optimal) statement that if an $n$-vertex expander embeds with average distortion $D\geqslant 1$ into $(X,\|\cdot\|_X)$, then necessarily $\mathrm{dim}(X)\geqslant n^{\Omega(1/D)}$, which is sharp by the work of Johnson, Lindenstrauss and Schechtman (1987). This improves over the previously best-known bound $\mathrm{dim}(X)\gtrsim (\log n)^2/D^2$ of Linial, London and Rabinovich (1995), strengthens a theorem of Matou\v{s}ek (1996) which resolved questions of Johnson and Lindenstrauss (1982), Bourgain (1985) and Arias-de-Reyna and Rodr{\'{\i}}guez-Piazza (1992), and answers negatively a question that was posed (for algorithmic purposes) by Andoni, Nguyen, Nikolov, Razenshteyn and Waingarten (2016).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信