$\ell_{p}$-拟信息最小化的不精确近邻算子

Cian O'Brien, Mark D. Plumbley
{"title":"$\\ell_{p}$-拟信息最小化的不精确近邻算子","authors":"Cian O'Brien, Mark D. Plumbley","doi":"10.1109/ICASSP.2018.8462524","DOIUrl":null,"url":null,"abstract":"Proximal methods are an important tool in signal processing applications, where many problems can be characterized by the minimization of an expression involving a smooth fitting term and a convex regularization term - for example the classic $\\ell_{1}$ -Lasso. Such problems can be solved using the relevant proximal operator. Here we consider the use of proximal operators for the $\\ell_{p}$ -quasinorm where $0\\leq p\\leq 1$. Rather than seek a closed form solution, we develop an iterative algorithm using a Majorization-Minimization procedure which results in an inexact operator. Experiments on image denoising show that for $p\\leq 1$ the algorithm is effective in the high-noise scenario, outperforming the Lasso despite the inexactness of the proximal step.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"4724-4728"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inexact Proximal Operators for $\\\\ell_{p}$-Quasinorm Minimization\",\"authors\":\"Cian O'Brien, Mark D. Plumbley\",\"doi\":\"10.1109/ICASSP.2018.8462524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proximal methods are an important tool in signal processing applications, where many problems can be characterized by the minimization of an expression involving a smooth fitting term and a convex regularization term - for example the classic $\\\\ell_{1}$ -Lasso. Such problems can be solved using the relevant proximal operator. Here we consider the use of proximal operators for the $\\\\ell_{p}$ -quasinorm where $0\\\\leq p\\\\leq 1$. Rather than seek a closed form solution, we develop an iterative algorithm using a Majorization-Minimization procedure which results in an inexact operator. Experiments on image denoising show that for $p\\\\leq 1$ the algorithm is effective in the high-noise scenario, outperforming the Lasso despite the inexactness of the proximal step.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"18 1\",\"pages\":\"4724-4728\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近端方法是信号处理应用中的一个重要工具,其中许多问题可以通过包含平滑拟合项和凸正则化项的表达式的最小化来表征-例如经典的$\ell_{1}$ - lasso。这些问题可以使用相关的近端算子来解决。在这里,我们考虑使用近端算子的$\ell_{p}$ -拟规范,其中$0\leq p\leq 1$。而不是寻求封闭形式的解决方案,我们开发了一个迭代算法,使用最大化-最小化过程,导致不精确的算子。图像去噪实验表明,对于$p\leq 1$,该算法在高噪声场景下是有效的,尽管近端步骤不精确,但性能优于Lasso。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inexact Proximal Operators for $\ell_{p}$-Quasinorm Minimization
Proximal methods are an important tool in signal processing applications, where many problems can be characterized by the minimization of an expression involving a smooth fitting term and a convex regularization term - for example the classic $\ell_{1}$ -Lasso. Such problems can be solved using the relevant proximal operator. Here we consider the use of proximal operators for the $\ell_{p}$ -quasinorm where $0\leq p\leq 1$. Rather than seek a closed form solution, we develop an iterative algorithm using a Majorization-Minimization procedure which results in an inexact operator. Experiments on image denoising show that for $p\leq 1$ the algorithm is effective in the high-noise scenario, outperforming the Lasso despite the inexactness of the proximal step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信