Henry Villarreal-Torres, Julio Angeles-Morales, W. Marín-Rodriguez, Daniel Andrade Girón, Edgardo Carreño Cisneros, Jenny Cano-Mejía, Carmen Mejía-Murillo, Mariby C. Boscán-Carroz, Gumercindo Flores-Reyes, Oscar Cruz-Cruz
{"title":"使用人工智能和数据科学技术预测学生支付行为的分类模型的发展","authors":"Henry Villarreal-Torres, Julio Angeles-Morales, W. Marín-Rodriguez, Daniel Andrade Girón, Edgardo Carreño Cisneros, Jenny Cano-Mejía, Carmen Mejía-Murillo, Mariby C. Boscán-Carroz, Gumercindo Flores-Reyes, Oscar Cruz-Cruz","doi":"10.4108/eetsis.3489","DOIUrl":null,"url":null,"abstract":"Artificial intelligence today has become a valuable tool for decision-making, where universities have to adapt and optimize their processes, improving the quality of their services. In this context, the economic income from collections is vital for sustainability. There are several problems that can contribute to student delinquency, such as economic, financial, academic, family, and personal. For this reason, the study aimed to develop a classification model to predict the payment behavior of enrolled students. The methodology is a proactive, technological study of incremental innovation with a synchronous temporal scope. The study population consisted of 8,495 undergraduate students enrolled in the 2022 - II academic semester, containing information on academic performance, financial situation, and personal factors. The result is a classification model using the H2O.ai platform, discretization algorithms, data balancing, and the R language. Data science algorithms obtained the base from the institution's computer system. The data sets for training and testing correspond to 70% and 30%, obtaining the GBM Grid model whose performance metrics are AUC of 0.905, AUCPR of 0.926, and logLoss equivalent to 0.311; that is, the model efficiently complies with the classification of student debtors to provide them with early intervention service and help them complete their studies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a Classification Model for Predicting Student Payment Behavior Using Artificial Intelligence and Data Science Techniques\",\"authors\":\"Henry Villarreal-Torres, Julio Angeles-Morales, W. Marín-Rodriguez, Daniel Andrade Girón, Edgardo Carreño Cisneros, Jenny Cano-Mejía, Carmen Mejía-Murillo, Mariby C. Boscán-Carroz, Gumercindo Flores-Reyes, Oscar Cruz-Cruz\",\"doi\":\"10.4108/eetsis.3489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence today has become a valuable tool for decision-making, where universities have to adapt and optimize their processes, improving the quality of their services. In this context, the economic income from collections is vital for sustainability. There are several problems that can contribute to student delinquency, such as economic, financial, academic, family, and personal. For this reason, the study aimed to develop a classification model to predict the payment behavior of enrolled students. The methodology is a proactive, technological study of incremental innovation with a synchronous temporal scope. The study population consisted of 8,495 undergraduate students enrolled in the 2022 - II academic semester, containing information on academic performance, financial situation, and personal factors. The result is a classification model using the H2O.ai platform, discretization algorithms, data balancing, and the R language. Data science algorithms obtained the base from the institution's computer system. The data sets for training and testing correspond to 70% and 30%, obtaining the GBM Grid model whose performance metrics are AUC of 0.905, AUCPR of 0.926, and logLoss equivalent to 0.311; that is, the model efficiently complies with the classification of student debtors to provide them with early intervention service and help them complete their studies.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eetsis.3489\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.3489","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of a Classification Model for Predicting Student Payment Behavior Using Artificial Intelligence and Data Science Techniques
Artificial intelligence today has become a valuable tool for decision-making, where universities have to adapt and optimize their processes, improving the quality of their services. In this context, the economic income from collections is vital for sustainability. There are several problems that can contribute to student delinquency, such as economic, financial, academic, family, and personal. For this reason, the study aimed to develop a classification model to predict the payment behavior of enrolled students. The methodology is a proactive, technological study of incremental innovation with a synchronous temporal scope. The study population consisted of 8,495 undergraduate students enrolled in the 2022 - II academic semester, containing information on academic performance, financial situation, and personal factors. The result is a classification model using the H2O.ai platform, discretization algorithms, data balancing, and the R language. Data science algorithms obtained the base from the institution's computer system. The data sets for training and testing correspond to 70% and 30%, obtaining the GBM Grid model whose performance metrics are AUC of 0.905, AUCPR of 0.926, and logLoss equivalent to 0.311; that is, the model efficiently complies with the classification of student debtors to provide them with early intervention service and help them complete their studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.