基于线性时间优化的监督语义梯度提取

Shulin Yang, Jue Wang, L. Shapiro
{"title":"基于线性时间优化的监督语义梯度提取","authors":"Shulin Yang, Jue Wang, L. Shapiro","doi":"10.1109/CVPR.2013.364","DOIUrl":null,"url":null,"abstract":"This paper proposes a new supervised semantic edge and gradient extraction approach, which allows the user to roughly scribble over the desired region to extract semantically-dominant and coherent edges in it. Our approach first extracts low-level edge lets (small edge clusters) from the input image as primitives and build a graph upon them, by jointly considering both the geometric and appearance compatibility of edge lets. Given the characteristics of the graph, it cannot be effectively optimized by commonly-used energy minimization tools such as graph cuts. We thus propose an efficient linear algorithm for precise graph optimization, by taking advantage of the special structure of the graph. %Optimal parameter settings of the model are learnt from a dataset. Objective evaluations show that the proposed method significantly outperforms previous semantic edge detection algorithms. Finally, we demonstrate the effectiveness of the system in various image editing tasks.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"45 1","pages":"2826-2833"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supervised Semantic Gradient Extraction Using Linear-Time Optimization\",\"authors\":\"Shulin Yang, Jue Wang, L. Shapiro\",\"doi\":\"10.1109/CVPR.2013.364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new supervised semantic edge and gradient extraction approach, which allows the user to roughly scribble over the desired region to extract semantically-dominant and coherent edges in it. Our approach first extracts low-level edge lets (small edge clusters) from the input image as primitives and build a graph upon them, by jointly considering both the geometric and appearance compatibility of edge lets. Given the characteristics of the graph, it cannot be effectively optimized by commonly-used energy minimization tools such as graph cuts. We thus propose an efficient linear algorithm for precise graph optimization, by taking advantage of the special structure of the graph. %Optimal parameter settings of the model are learnt from a dataset. Objective evaluations show that the proposed method significantly outperforms previous semantic edge detection algorithms. Finally, we demonstrate the effectiveness of the system in various image editing tasks.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"45 1\",\"pages\":\"2826-2833\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的有监督的语义边缘和梯度提取方法,该方法允许用户在期望的区域上粗略地涂写,以提取其中的语义优势和连贯边缘。我们的方法首先从输入图像中提取低级边缘let(小边缘簇)作为基元,并通过共同考虑边缘let的几何和外观兼容性在其上构建图。考虑到图的特性,常用的能量最小化工具(如图割)无法对图进行有效优化。因此,我们利用图的特殊结构,提出了一种有效的线性算法来进行精确的图优化。模型的最优参数设置是从数据集中学习的。客观评价表明,该方法明显优于现有的语义边缘检测算法。最后,我们验证了该系统在各种图像编辑任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised Semantic Gradient Extraction Using Linear-Time Optimization
This paper proposes a new supervised semantic edge and gradient extraction approach, which allows the user to roughly scribble over the desired region to extract semantically-dominant and coherent edges in it. Our approach first extracts low-level edge lets (small edge clusters) from the input image as primitives and build a graph upon them, by jointly considering both the geometric and appearance compatibility of edge lets. Given the characteristics of the graph, it cannot be effectively optimized by commonly-used energy minimization tools such as graph cuts. We thus propose an efficient linear algorithm for precise graph optimization, by taking advantage of the special structure of the graph. %Optimal parameter settings of the model are learnt from a dataset. Objective evaluations show that the proposed method significantly outperforms previous semantic edge detection algorithms. Finally, we demonstrate the effectiveness of the system in various image editing tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信