利用无人机进行鲁棒环境感知

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ahmed Boubrima, E. Knightly
{"title":"利用无人机进行鲁棒环境感知","authors":"Ahmed Boubrima, E. Knightly","doi":"10.1145/3464943","DOIUrl":null,"url":null,"abstract":"In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Environmental Sensing Using UAVs\",\"authors\":\"Ahmed Boubrima, E. Knightly\",\"doi\":\"10.1145/3464943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3464943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们首先研究了空中空气污染测量的质量,并描述了无人机安装的气体传感器的主要误差来源。为此,我们建立了ASTRO+,一个空中-地面污染监测平台,并使用它来收集空中和参考空气污染测量的综合数据集。我们表明,无人机引起的动态气流会影响周围空气的温度和湿度水平,进而影响气体传感器的测量质量。然后,在本文的第二部分,我们利用天气条件对污染测量质量的影响,以设计一种无人机任务规划算法,该算法在考虑航空测量质量的同时适应无人机的轨迹。我们基于挥发性有机化合物污染数据集评估了我们的任务规划方法,并显示了即使在污染动态高的情况下也能保持高性能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Environmental Sensing Using UAVs
In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信