{"title":"毕达哥拉斯图象模糊集,第1部分-基本概念","authors":"B. Cuong","doi":"10.15625/1813-9663/35/4/13898","DOIUrl":null,"url":null,"abstract":"Picture fuzzy set (2013) is a generalization of the Zadeh‟ fuzzy set (1965) and the Antanassov‟intuitionistic fuzzy set. The new concept could be useful for many computational intelligentproblems. Basic operators of the picture fuzzy logic were studied by Cuong, Ngan [10,11 ].Newconcept –Pythagorean picture fuzzy set ( PPFS) is a combination of Picture fuzzy set with theYager‟s Pythagorean fuzzy set [12-14].First, in the Part 1 of this paper, we consider basic notionson PPFS as set operators of PPFS‟s , Pythagorean picture relation, Pythagorean picture fuzzy softset. Next, the Part 2 of the paper is devoted to main operators in fuzzy logic on PPFS: picturenegation operator, picture t-norm, picture t-conorm, picture implication operators on PPFS.As aresult we will have a new branch of the picture fuzzy set theory.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pythagorean Picture Fuzzy Sets, Part 1- basic notions\",\"authors\":\"B. Cuong\",\"doi\":\"10.15625/1813-9663/35/4/13898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Picture fuzzy set (2013) is a generalization of the Zadeh‟ fuzzy set (1965) and the Antanassov‟intuitionistic fuzzy set. The new concept could be useful for many computational intelligentproblems. Basic operators of the picture fuzzy logic were studied by Cuong, Ngan [10,11 ].Newconcept –Pythagorean picture fuzzy set ( PPFS) is a combination of Picture fuzzy set with theYager‟s Pythagorean fuzzy set [12-14].First, in the Part 1 of this paper, we consider basic notionson PPFS as set operators of PPFS‟s , Pythagorean picture relation, Pythagorean picture fuzzy softset. Next, the Part 2 of the paper is devoted to main operators in fuzzy logic on PPFS: picturenegation operator, picture t-norm, picture t-conorm, picture implication operators on PPFS.As aresult we will have a new branch of the picture fuzzy set theory.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/35/4/13898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/35/4/13898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pythagorean Picture Fuzzy Sets, Part 1- basic notions
Picture fuzzy set (2013) is a generalization of the Zadeh‟ fuzzy set (1965) and the Antanassov‟intuitionistic fuzzy set. The new concept could be useful for many computational intelligentproblems. Basic operators of the picture fuzzy logic were studied by Cuong, Ngan [10,11 ].Newconcept –Pythagorean picture fuzzy set ( PPFS) is a combination of Picture fuzzy set with theYager‟s Pythagorean fuzzy set [12-14].First, in the Part 1 of this paper, we consider basic notionson PPFS as set operators of PPFS‟s , Pythagorean picture relation, Pythagorean picture fuzzy softset. Next, the Part 2 of the paper is devoted to main operators in fuzzy logic on PPFS: picturenegation operator, picture t-norm, picture t-conorm, picture implication operators on PPFS.As aresult we will have a new branch of the picture fuzzy set theory.