HCI立体度量:立体算法的几何感知性能分析

Katrin Honauer, L. Maier-Hein, D. Kondermann
{"title":"HCI立体度量:立体算法的几何感知性能分析","authors":"Katrin Honauer, L. Maier-Hein, D. Kondermann","doi":"10.1109/ICCV.2015.245","DOIUrl":null,"url":null,"abstract":"Performance characterization of stereo methods is mandatory to decide which algorithm is useful for which application. Prevalent benchmarks mainly use the root mean squared error (RMS) with respect to ground truth disparity maps to quantify algorithm performance. We show that the RMS is of limited expressiveness for algorithm selection and introduce the HCI Stereo Metrics. These metrics assess stereo results by harnessing three semantic cues: depth discontinuities, planar surfaces, and fine geometric structures. For each cue, we extract the relevant set of pixels from existing ground truth. We then apply our evaluation functions to quantify characteristics such as edge fattening and surface smoothness. We demonstrate that our approach supports practitioners in selecting the most suitable algorithm for their application. Using the new Middlebury dataset, we show that rankings based on our metrics reveal specific algorithm strengths and weaknesses which are not quantified by existing metrics. We finally show how stacked bar charts and radar charts visually support multidimensional performance evaluation. An interactive stereo benchmark based on the proposed metrics and visualizations is available at: http://hci.iwr.uni-heidelberg.de/stereometrics.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"30 1","pages":"2120-2128"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The HCI Stereo Metrics: Geometry-Aware Performance Analysis of Stereo Algorithms\",\"authors\":\"Katrin Honauer, L. Maier-Hein, D. Kondermann\",\"doi\":\"10.1109/ICCV.2015.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance characterization of stereo methods is mandatory to decide which algorithm is useful for which application. Prevalent benchmarks mainly use the root mean squared error (RMS) with respect to ground truth disparity maps to quantify algorithm performance. We show that the RMS is of limited expressiveness for algorithm selection and introduce the HCI Stereo Metrics. These metrics assess stereo results by harnessing three semantic cues: depth discontinuities, planar surfaces, and fine geometric structures. For each cue, we extract the relevant set of pixels from existing ground truth. We then apply our evaluation functions to quantify characteristics such as edge fattening and surface smoothness. We demonstrate that our approach supports practitioners in selecting the most suitable algorithm for their application. Using the new Middlebury dataset, we show that rankings based on our metrics reveal specific algorithm strengths and weaknesses which are not quantified by existing metrics. We finally show how stacked bar charts and radar charts visually support multidimensional performance evaluation. An interactive stereo benchmark based on the proposed metrics and visualizations is available at: http://hci.iwr.uni-heidelberg.de/stereometrics.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"30 1\",\"pages\":\"2120-2128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

立体方法的性能表征是必须的,以确定哪种算法对哪种应用程序有用。普遍的基准测试主要使用相对于真实差值映射的均方根误差(RMS)来量化算法的性能。我们证明了RMS对算法选择的表达能力有限,并介绍了HCI立体度量。这些指标通过利用三个语义线索来评估立体效果:深度不连续、平面和精细几何结构。对于每个线索,我们从现有的ground truth中提取相关的像素集。然后,我们应用我们的评估函数来量化特征,如边缘增肥和表面平滑。我们证明,我们的方法支持从业者选择最适合他们的应用算法。使用新的Middlebury数据集,我们显示基于我们的指标的排名揭示了现有指标无法量化的特定算法优势和劣势。我们最后展示了堆叠条形图和雷达图如何在视觉上支持多维性能评估。基于建议的度量和可视化的交互式立体基准可以在:http://hci.iwr.uni-heidelberg.de/stereometrics上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The HCI Stereo Metrics: Geometry-Aware Performance Analysis of Stereo Algorithms
Performance characterization of stereo methods is mandatory to decide which algorithm is useful for which application. Prevalent benchmarks mainly use the root mean squared error (RMS) with respect to ground truth disparity maps to quantify algorithm performance. We show that the RMS is of limited expressiveness for algorithm selection and introduce the HCI Stereo Metrics. These metrics assess stereo results by harnessing three semantic cues: depth discontinuities, planar surfaces, and fine geometric structures. For each cue, we extract the relevant set of pixels from existing ground truth. We then apply our evaluation functions to quantify characteristics such as edge fattening and surface smoothness. We demonstrate that our approach supports practitioners in selecting the most suitable algorithm for their application. Using the new Middlebury dataset, we show that rankings based on our metrics reveal specific algorithm strengths and weaknesses which are not quantified by existing metrics. We finally show how stacked bar charts and radar charts visually support multidimensional performance evaluation. An interactive stereo benchmark based on the proposed metrics and visualizations is available at: http://hci.iwr.uni-heidelberg.de/stereometrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信