最优控制问题的廉价牛顿步:自动微分和Pantoja算法

IF 1.4 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
B. Christianson
{"title":"最优控制问题的廉价牛顿步:自动微分和Pantoja算法","authors":"B. Christianson","doi":"10.1080/10556789908805736","DOIUrl":null,"url":null,"abstract":"In this paper we discuss Pantoja's construction of the Newton direction for discrete time optimal control problems. We show that automatic differentiation (AD) techniques can be used to calculate the Newton direction accurately, without requiring extensive re-writing of user code, and at a surprisingly low computational cost: for an N-step problem with p control variables and q state variables at each step, the worst case cost is 6(p + q + 1) times the computational cost of a single target function evaluation, independent of N, together with at most p 3/3 + p 2(q + 1) + 2p(q + 1)2 + (q + l)3, i.e. less than (p + q + l)3, floating point multiply-and-add operations per time step. These costs may be considerably reduced if there is significant structural sparsity in the problem dynamics. The systematic use of checkpointing roughly doubles the operation counts, but reduces the total space cost to the order of 4pN floating point stores. A naive approach to finding the Newton step would require the solution of ...","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"24 1","pages":"729-743"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Cheap Newton steps for optimal control problems: automatic differentiation and Pantoja's algorithm\",\"authors\":\"B. Christianson\",\"doi\":\"10.1080/10556789908805736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss Pantoja's construction of the Newton direction for discrete time optimal control problems. We show that automatic differentiation (AD) techniques can be used to calculate the Newton direction accurately, without requiring extensive re-writing of user code, and at a surprisingly low computational cost: for an N-step problem with p control variables and q state variables at each step, the worst case cost is 6(p + q + 1) times the computational cost of a single target function evaluation, independent of N, together with at most p 3/3 + p 2(q + 1) + 2p(q + 1)2 + (q + l)3, i.e. less than (p + q + l)3, floating point multiply-and-add operations per time step. These costs may be considerably reduced if there is significant structural sparsity in the problem dynamics. The systematic use of checkpointing roughly doubles the operation counts, but reduces the total space cost to the order of 4pN floating point stores. A naive approach to finding the Newton step would require the solution of ...\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"24 1\",\"pages\":\"729-743\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789908805736\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805736","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 18

摘要

本文讨论了离散时间最优控制问题的牛顿方向的Pantoja构造。我们表明,自动微分(AD)技术可用于精确计算牛顿方向,而不需要大量重写用户代码,并且计算成本低得惊人:对于每一步有p个控制变量和q个状态变量的N步问题,最坏情况下的代价是6(p + q + 1)乘以单个目标函数求值的计算代价,不依赖于N,加上至多p 3/3 + p2 (q + 1) + 2p(q + 1)2 + (q + 1) 3,即小于(p + q + 1) 3,每个时间步的浮点乘法和加法运算。如果问题动力学中存在显著的结构稀疏性,则这些成本可能会大大降低。系统地使用检查点大约使操作次数增加一倍,但将总空间成本降低到4pN浮点存储的顺序。一种求牛顿阶跃的朴素方法需要解…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cheap Newton steps for optimal control problems: automatic differentiation and Pantoja's algorithm
In this paper we discuss Pantoja's construction of the Newton direction for discrete time optimal control problems. We show that automatic differentiation (AD) techniques can be used to calculate the Newton direction accurately, without requiring extensive re-writing of user code, and at a surprisingly low computational cost: for an N-step problem with p control variables and q state variables at each step, the worst case cost is 6(p + q + 1) times the computational cost of a single target function evaluation, independent of N, together with at most p 3/3 + p 2(q + 1) + 2p(q + 1)2 + (q + l)3, i.e. less than (p + q + l)3, floating point multiply-and-add operations per time step. These costs may be considerably reduced if there is significant structural sparsity in the problem dynamics. The systematic use of checkpointing roughly doubles the operation counts, but reduces the total space cost to the order of 4pN floating point stores. A naive approach to finding the Newton step would require the solution of ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Methods & Software
Optimization Methods & Software 工程技术-计算机:软件工程
CiteScore
4.50
自引率
0.00%
发文量
40
审稿时长
7 months
期刊介绍: Optimization Methods and Software publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design. Topics include: Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms. Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators. Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces. Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信