基于k-均值聚类算法的研究与改进方法

Guohua Zhang, Kangting Zhao, Yi Li
{"title":"基于k-均值聚类算法的研究与改进方法","authors":"Guohua Zhang, Kangting Zhao, Yi Li","doi":"10.5539/cis.v12n1p49","DOIUrl":null,"url":null,"abstract":"In view of the sensitivity of the traditional mean algorithm to outliers and noise points, an improved mean algorithm is proposed in this paper, which is based on the density of the distribution of objects in space. In the measurement of density, the sensitivity of clustering effect to initial parameters is reduced. The improved algorithm can filter the \"noise\" data and discover the clustering of arbitrary shapes, which is obviously superior to the standard mean algorithm.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"61 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research and Improvement Method Based on k-mean Clustering Algorithm\",\"authors\":\"Guohua Zhang, Kangting Zhao, Yi Li\",\"doi\":\"10.5539/cis.v12n1p49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the sensitivity of the traditional mean algorithm to outliers and noise points, an improved mean algorithm is proposed in this paper, which is based on the density of the distribution of objects in space. In the measurement of density, the sensitivity of clustering effect to initial parameters is reduced. The improved algorithm can filter the \\\"noise\\\" data and discover the clustering of arbitrary shapes, which is obviously superior to the standard mean algorithm.\",\"PeriodicalId\":14676,\"journal\":{\"name\":\"J. Chem. Inf. Comput. Sci.\",\"volume\":\"61 1\",\"pages\":\"49-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Chem. Inf. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v12n1p49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v12n1p49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对传统均值算法对离群点和噪声点的敏感性,本文提出了一种基于物体在空间中分布密度的改进均值算法。在密度测量中,降低了聚类效应对初始参数的敏感性。改进算法可以过滤“噪声”数据,发现任意形状的聚类,明显优于标准均值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research and Improvement Method Based on k-mean Clustering Algorithm
In view of the sensitivity of the traditional mean algorithm to outliers and noise points, an improved mean algorithm is proposed in this paper, which is based on the density of the distribution of objects in space. In the measurement of density, the sensitivity of clustering effect to initial parameters is reduced. The improved algorithm can filter the "noise" data and discover the clustering of arbitrary shapes, which is obviously superior to the standard mean algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信