{"title":"新型苯并咪唑盐的合成、表征及抗SARS - CoV-2的硅分析","authors":"E. Üstün, N. Şahin","doi":"10.2478/auoc-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract In acute conditions, vaccines are very important, although they provide antibodies for fighting against COVID-19 for a certain period. It is necessary to produce an anti-viral agent for a usual healing process against SARS CoV-2 which is responsible the pandemic we are living in. Many drugs with benzimidazole main scaffold are still used in a wide variety of treatment procedures. In this case, substituted benzimidazole structures could be good candidates for fighting against COVID-19. Theoretical calculation methods could be a key tool for overcome the difficulties of individual analyzing of each new structure. In this study, new benzimidazole structures were synthesized and characterized for in silico evaluation as anti-viral agent. The molecules were optimized and analyzed for reactivity with Koopmans Theorem. Also, molecular docking simulations were performed for SARS coronavirus main peptidase (PDB ID: 2GTB), COVID-19 main protease (PDB ID: 5R82), and papain-like protease of SARS CoV-2 (PDB ID: 6W9C) crystals.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis, characterization, and in silico analysis against SARS CoV-2 of novel benzimidazolium salts\",\"authors\":\"E. Üstün, N. Şahin\",\"doi\":\"10.2478/auoc-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In acute conditions, vaccines are very important, although they provide antibodies for fighting against COVID-19 for a certain period. It is necessary to produce an anti-viral agent for a usual healing process against SARS CoV-2 which is responsible the pandemic we are living in. Many drugs with benzimidazole main scaffold are still used in a wide variety of treatment procedures. In this case, substituted benzimidazole structures could be good candidates for fighting against COVID-19. Theoretical calculation methods could be a key tool for overcome the difficulties of individual analyzing of each new structure. In this study, new benzimidazole structures were synthesized and characterized for in silico evaluation as anti-viral agent. The molecules were optimized and analyzed for reactivity with Koopmans Theorem. Also, molecular docking simulations were performed for SARS coronavirus main peptidase (PDB ID: 2GTB), COVID-19 main protease (PDB ID: 5R82), and papain-like protease of SARS CoV-2 (PDB ID: 6W9C) crystals.\",\"PeriodicalId\":19641,\"journal\":{\"name\":\"Ovidius University Annals of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ovidius University Annals of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/auoc-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, characterization, and in silico analysis against SARS CoV-2 of novel benzimidazolium salts
Abstract In acute conditions, vaccines are very important, although they provide antibodies for fighting against COVID-19 for a certain period. It is necessary to produce an anti-viral agent for a usual healing process against SARS CoV-2 which is responsible the pandemic we are living in. Many drugs with benzimidazole main scaffold are still used in a wide variety of treatment procedures. In this case, substituted benzimidazole structures could be good candidates for fighting against COVID-19. Theoretical calculation methods could be a key tool for overcome the difficulties of individual analyzing of each new structure. In this study, new benzimidazole structures were synthesized and characterized for in silico evaluation as anti-viral agent. The molecules were optimized and analyzed for reactivity with Koopmans Theorem. Also, molecular docking simulations were performed for SARS coronavirus main peptidase (PDB ID: 2GTB), COVID-19 main protease (PDB ID: 5R82), and papain-like protease of SARS CoV-2 (PDB ID: 6W9C) crystals.